已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mobile-Unet: An efficient convolutional neural network for fabric defect detection

Softmax函数 计算机科学 人工智能 分割 深度学习 卷积神经网络 特征(语言学) 模式识别(心理学) 卷积(计算机科学) 编码器 反褶积 钥匙(锁) 人工神经网络 算法 哲学 语言学 计算机安全 操作系统
作者
Junfeng Jing,Zhen Wang,Matthias Rätsch,Huanhuan Zhang
出处
期刊:Textile Research Journal [SAGE]
卷期号:92 (1-2): 30-42 被引量:286
标识
DOI:10.1177/0040517520928604
摘要

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北北北发布了新的文献求助10
1秒前
上官若男应助zhaoyuwei采纳,获得10
1秒前
5秒前
Xuu发布了新的文献求助10
6秒前
7秒前
YHY发布了新的文献求助10
9秒前
FashionBoy应助高贵芒果采纳,获得30
10秒前
10秒前
Bunny发布了新的文献求助10
12秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
12秒前
12秒前
12秒前
Akim应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
吴彦祖应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
斧王应助科研通管家采纳,获得10
13秒前
吴彦祖应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得30
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
吴彦祖应助科研通管家采纳,获得10
14秒前
Yuki应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
吴彦祖应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Yuki应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
吴彦祖应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
斧王应助科研通管家采纳,获得10
15秒前
15秒前
科研小生完成签到,获得积分10
17秒前
QQ1122发布了新的文献求助10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454643
求助须知:如何正确求助?哪些是违规求助? 4562040
关于积分的说明 14284160
捐赠科研通 4485847
什么是DOI,文献DOI怎么找? 2457056
邀请新用户注册赠送积分活动 1447677
关于科研通互助平台的介绍 1422913