Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer

人工智能 计算机科学 深度学习 目标检测 上下文图像分类 鉴定(生物学) 癌症 图像自动标注 介绍 机器学习 模式识别(心理学) 图像检索 医学 图像(数学) 内科学 家庭医学 生物 植物
作者
Roshan A. Welikala,Paolo Remagnino,Jian Han Lim,Chee Seng Chan,Senthilmani Rajendran,Thomas George Kallarakkal,Rosnah Binti Zain,Ruwan Duminda Jayasinghe,Jyotsna Rimal,Alexander Ross Kerr,Rahmi Amtha,Karthikeya Patil,Wanninayake Mudiyanselage Tilakaratne,John Gibson,Sok Ching Cheong,Sarah Barman
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 132677-132693 被引量:232
标识
DOI:10.1109/access.2020.3010180
摘要

Oral cancer is a major global health issue accounting for 177,384 deaths in 2018 and it is most prevalent in low- and middle-income countries. Enabling automation in the identification of potentially malignant and malignant lesions in the oral cavity would potentially lead to low-cost and early diagnosis of the disease. Building a large library of well-annotated oral lesions is key. As part of the MeMoSA ® (Mobile Mouth Screening Anywhere) project, images are currently in the process of being gathered from clinical experts from across the world, who have been provided with an annotation tool to produce rich labels. A novel strategy to combine bounding box annotations from multiple clinicians is provided in this paper. Further to this, deep neural networks were used to build automated systems, in which complex patterns were derived for tackling this difficult task. Using the initial data gathered in this study, two deep learning based computer vision approaches were assessed for the automated detection and classification of oral lesions for the early detection of oral cancer, these were image classification with ResNet-101 and object detection with the Faster R-CNN. Image classification achieved an F1 score of 87.07% for identification of images that contained lesions and 78.30% for the identification of images that required referral. Object detection achieved an F1 score of 41.18% for the detection of lesions that required referral. Further performances are reported with respect to classifying according to the type of referral decision. Our initial results demonstrate deep learning has the potential to tackle this challenging task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的飞槐完成签到 ,获得积分10
2秒前
831143完成签到 ,获得积分0
6秒前
20秒前
ikun416完成签到 ,获得积分10
21秒前
judy完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
25秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
cctv18应助科研通管家采纳,获得10
26秒前
zhang26xian完成签到,获得积分10
39秒前
sam发布了新的文献求助10
40秒前
40秒前
小荣布布完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
orixero应助聪慧芷巧采纳,获得10
47秒前
SC完成签到 ,获得积分10
49秒前
852应助聪慧芷巧采纳,获得10
49秒前
小温完成签到,获得积分10
55秒前
Fiona完成签到 ,获得积分10
58秒前
ldy完成签到 ,获得积分10
1分钟前
科研通AI2S应助舟遥采纳,获得10
1分钟前
善良的火完成签到 ,获得积分10
1分钟前
1分钟前
YAN完成签到 ,获得积分10
1分钟前
KrisTina完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883857
求助须知:如何正确求助?哪些是违规求助? 3426171
关于积分的说明 10747083
捐赠科研通 3150984
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734