DPYD公司
医学
内科学
毒性
肿瘤科
二氢嘧啶脱氢酶
加药
胃肠病学
化疗
药理学
队列
基因型
药物遗传学
外科
氟尿嘧啶
生物
遗传学
胸苷酸合酶
基因
作者
Linda M. Henricks,Lisanne N. van Merendonk,Didier Meulendijks,Maarten J. Deenen,Jos H. Beijnen,Anthonius de Boer,Annemieke Cats,Jan H.M. Schellens
摘要
Carriers of the genetic DPYD*2A variant, resulting in dihydropyrimidine dehydrogenase deficiency, are at significantly increased risk of developing severe fluoropyrimidine-associated toxicity. Upfront DPYD*2A genotype-based dose reductions improve patient safety, but uncertainty exists whether this has a negative impact on treatment effectiveness. Therefore, our study investigated effectiveness and safety of DPYD*2A genotype-guided dosing. A cohort of 40 prospectively identified heterozygous DPYD*2A carriers, treated with a ~50% reduced fluoropyrimidine dose, was identified. For effectiveness analysis, a matched pair-analysis was performed in which for each DPYD*2A carrier a matched DPYD*2A wild-type patient was identified. Overall survival and progression-free survival were compared between the matched groups. The frequency of severe (grade ≥ 3) treatment-related toxicity was compared to 1] a cohort of 1606 wild-type patients treated with full dose and 2] a cohort of historical controls derived from literature, i.e. 86 DPYD*2A variant carriers who received a full fluoropyrimidine dose. For 37 out of 40 DPYD*2A carriers, a matched control could be identified. Compared to matched controls, reduced doses did not negatively affect overall survival (median 27 months versus 24 months, p = 0.47) nor progression-free survival (median 14 months versus 10 months, p = 0.54). Risk of severe fluoropyrimidine-related toxicity in DPYD*2A carriers treated with reduced dose was 18%, comparable to wild-type patients (23%, p = 0.57) and significantly lower than the risk of 77% in DPYD*2A carriers treated with full dose (p < 0.001). Our study is the first to show that DPYD*2A genotype-guided dosing appears to have no negative effect on effectiveness of fluoropyrimidine-based chemotherapy, while resulting in significantly improved patient safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI