Statistical Workflow for Feature Selection in Human Metabolomics Data

代谢组学 工作流程 计算机科学 数据科学 领域(数学) 比例(比率) 标准化 数据挖掘 生物信息学 生物 数学 量子力学 数据库 操作系统 物理 纯数学
作者
Joseph Antonelli,Brian Claggett,Mir Henglin,Andy Kim,Gavin Ovsak,Nicole Kim,Katherine Deng,Kevin Rao,Octavia Tyagi,Jeramie D. Watrous,Kim A. Lagerborg,Pavel Hushcha,Olga Demler,Samia Mora,Teemu J. Niiranen,Alexandre C. Pereira,Mohit Jain,Susan Cheng
出处
期刊:Metabolites [Multidisciplinary Digital Publishing Institute]
卷期号:9 (7): 143-143 被引量:64
标识
DOI:10.3390/metabo9070143
摘要

High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, are becoming more common. Appropriate statistical analysis of these complex high-dimensional data will be critical for extracting meaningful results from such large-scale human metabolomics studies. Therefore, we consider the statistical analytical approaches that have been employed in prior human metabolomics studies. Based on the lessons learned and collective experience to date in the field, we offer a step-by-step framework for pursuing statistical analyses of cohort-based human metabolomics data, with a focus on feature selection. We discuss the range of options and approaches that may be employed at each stage of data management, analysis, and interpretation and offer guidance on the analytical decisions that need to be considered over the course of implementing a data analysis workflow. Certain pervasive analytical challenges facing the field warrant ongoing focused research. Addressing these challenges, particularly those related to analyzing human metabolomics data, will allow for more standardization of as well as advances in how research in the field is practiced. In turn, such major analytical advances will lead to substantial improvements in the overall contributions of human metabolomics investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琳科研_文献完成签到,获得积分20
刚刚
英姑应助wenqin采纳,获得10
刚刚
无情的友容完成签到 ,获得积分10
刚刚
顾矜应助kiki采纳,获得10
1秒前
科研通AI5应助鱼鱼鱼采纳,获得30
3秒前
英姑应助柚子采纳,获得10
5秒前
6秒前
lplmid发布了新的文献求助30
6秒前
9秒前
9秒前
9秒前
10秒前
chinbaor完成签到,获得积分10
13秒前
懒羊羊应助wsff采纳,获得10
13秒前
14秒前
kiki完成签到,获得积分10
14秒前
neiz发布了新的文献求助10
14秒前
lily88发布了新的文献求助10
16秒前
kiki发布了新的文献求助10
17秒前
17秒前
狂野的灵薇完成签到 ,获得积分10
17秒前
17秒前
LLL完成签到,获得积分10
17秒前
17秒前
易三木完成签到,获得积分10
18秒前
orixero应助谦让寄容采纳,获得10
20秒前
20秒前
程破茧完成签到,获得积分10
22秒前
zwy发布了新的文献求助10
22秒前
23秒前
希望天下0贩的0应助lily88采纳,获得10
25秒前
25秒前
等等发布了新的文献求助10
25秒前
26秒前
26秒前
李健应助登山人采纳,获得10
27秒前
苏鱼完成签到 ,获得积分10
27秒前
彩色觅荷发布了新的文献求助10
28秒前
煮梅发布了新的文献求助30
28秒前
大胆的弼完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572