Leveraging Meta-path based Context for Top- N Recommendation with A Neural Co-Attention Model

计算机科学 可解释性 路径(计算) 背景(考古学) 推荐系统 人工智能 机器学习 注意力网络 人工神经网络 代表(政治) 数据挖掘 计算机网络 法学 古生物学 政治 生物 政治学
作者
Binbin Hu,Chuan Shi,Wayne Xin Zhao,Philip S. Yu
标识
DOI:10.1145/3219819.3219965
摘要

Heterogeneous information network (HIN) has been widely adopted in recommender systems due to its excellence in modeling complex context information. Although existing HIN based recommendation methods have achieved performance improvement to some extent, they have two major shortcomings. First, these models seldom learn an explicit representation for path or meta-path in the recommendation task. Second, they do not consider the mutual effect between the meta-path and the involved user-item pair in an interaction. To address these issues, we develop a novel deep neural network with the co-attention mechanism for leveraging rich meta-path based context for top-N recommendation. We elaborately design a three-way neural interaction model by explicitly incorporating meta-path based context. To construct the meta-path based context, we propose to use a priority based sampling technique to select high-quality path instances. Our model is able to learn effective representations for users, items and meta-path based context for implementing a powerful interaction function. The co-attention mechanism improves the representations for meta-path based con- text, users and items in a mutual enhancement way. Extensive experiments on three real-world datasets have demonstrated the effectiveness of the proposed model. In particular, the proposed model performs well in the cold-start scenario and has potentially good interpretability for the recommendation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12333完成签到,获得积分10
1秒前
华仔应助风中的夕阳采纳,获得10
2秒前
逢投必过完成签到,获得积分10
3秒前
受伤的熊猫完成签到,获得积分10
3秒前
杨1998发布了新的文献求助10
4秒前
王若红发布了新的文献求助10
4秒前
Xiaopei完成签到,获得积分10
6秒前
单于无极应助老实寒云采纳,获得20
6秒前
6秒前
ZX612完成签到,获得积分10
6秒前
7秒前
小黄发布了新的文献求助30
8秒前
8秒前
梅花K完成签到,获得积分10
9秒前
傻妞完成签到,获得积分10
11秒前
11秒前
12秒前
zuoaogui发布了新的文献求助10
13秒前
ZHY完成签到 ,获得积分20
13秒前
Sky关闭了Sky文献求助
13秒前
迪鸣完成签到,获得积分10
14秒前
灵巧的翠风完成签到,获得积分10
14秒前
平淡小白菜完成签到,获得积分10
15秒前
小鸣完成签到 ,获得积分10
15秒前
哦吼吼吼吼完成签到 ,获得积分10
15秒前
是木易呀发布了新的文献求助30
16秒前
迷人夜香发布了新的文献求助30
16秒前
大个应助英俊的胜采纳,获得10
17秒前
purple完成签到 ,获得积分10
17秒前
郝绝山完成签到,获得积分10
17秒前
19秒前
郝绝山发布了新的文献求助10
21秒前
ZHY关注了科研通微信公众号
22秒前
23秒前
Orange应助cryjslong采纳,获得10
23秒前
六六发布了新的文献求助50
24秒前
24秒前
守墓人完成签到 ,获得积分10
24秒前
ZYT完成签到,获得积分10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784273
求助须知:如何正确求助?哪些是违规求助? 3329356
关于积分的说明 10241811
捐赠科研通 3044836
什么是DOI,文献DOI怎么找? 1671368
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759298