Applicability Domain: A Step Toward Confident Predictions and Decidability for QSAR Modeling

数量结构-活动关系 适用范围 计算机科学 领域(数学分析) 背景(考古学) 集合(抽象数据类型) 机器学习 插值(计算机图形学) 人工智能 任务(项目管理) 数据挖掘 数学 工程类 系统工程 数学分析 古生物学 运动(物理) 程序设计语言 生物
作者
Supratik Kar,Kunal Roy,Jerzy Leszczyński
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 141-169 被引量:90
标识
DOI:10.1007/978-1-4939-7899-1_6
摘要

In the context of human safety assessment through quantitative structure-activity relationship (QSAR) modeling, the concept of applicability domain (AD) has an enormous role to play. The Organization of Economic Co-operation and Development (OECD) for QSAR model validation recommended as principle 3 "A defined domain of applicability" to be present for a predictive QSAR model. The study of AD allows estimating the uncertainty in the prediction for a particular molecule based on how similar it is to the training compounds which are used in the model development. In the current scenario, AD represents an active research topic, and many methods have been designed to estimate the competence of a model and the confidence in its outcome for a given prediction task. Thus, characterization of interpolation space is significant in defining the AD. The diverse set of reported AD methods was constructed through different hypotheses and algorithms. These multiplicities of methodologies mystify the end users and make the comparison of the AD for different models a complex issue to address. We have attempted to summarize in this chapter the important concepts of AD including particulars of the available methods to compute the AD along with their thresholds and criteria for estimating AD through training set interpolation in the descriptor space. The idea about transparent domain and decision domain are also discussed. To help readers determine the AD in their projects, practical examples together with available open source software tools are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助st采纳,获得10
1秒前
Song君发布了新的文献求助10
1秒前
2秒前
李健的小迷弟应助Guoqiang采纳,获得10
2秒前
LYSnow7完成签到 ,获得积分10
3秒前
3秒前
你的完成签到 ,获得积分10
4秒前
ASH完成签到 ,获得积分10
5秒前
火星人完成签到 ,获得积分10
7秒前
7秒前
CodeCraft应助Aaron采纳,获得10
9秒前
科研小虫完成签到,获得积分10
10秒前
11秒前
Guoqiang发布了新的文献求助10
14秒前
共享精神应助xixihaha采纳,获得10
15秒前
懒惰扼杀激情完成签到 ,获得积分10
15秒前
上官若男应助科研小萌新采纳,获得10
16秒前
顺利的鱼完成签到,获得积分10
16秒前
jenningseastera应助shuicaoxi采纳,获得10
16秒前
爱听歌的大地完成签到 ,获得积分10
19秒前
22秒前
jenningseastera应助谨慎天问采纳,获得10
23秒前
23秒前
研友_VZG7GZ应助Bin_Liu采纳,获得10
23秒前
23秒前
嘴嘴是大嘴007完成签到,获得积分10
24秒前
科研小萌新完成签到,获得积分10
24秒前
异梦完成签到,获得积分10
24秒前
27秒前
27秒前
Ab发布了新的文献求助10
28秒前
Aaron发布了新的文献求助10
28秒前
Lzoctor完成签到 ,获得积分10
28秒前
31秒前
31秒前
34秒前
34秒前
Laurel发布了新的文献求助10
36秒前
36秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842