材料科学
电解质
离子电导率
离子运输机
离子
陶瓷
快离子导体
化学工程
电化学
电导率
复合数
无机化学
离子键合
复合材料
电极
化学
有机化学
物理化学
工程类
标识
DOI:10.1021/acsami.7b17301
摘要
Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li7La3Zr2O12 (LLZO) phase in the LLZO–poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI