避碰
卡西姆
弹道
运动规划
模型预测控制
控制器(灌溉)
计算机科学
碰撞
工程类
路径(计算)
车辆动力学
跟踪(教育)
控制理论(社会学)
模拟
控制工程
避障
移动机器人
控制(管理)
机器人
人工智能
航空航天工程
心理学
农学
程序设计语言
教育学
物理
计算机安全
天文
生物
作者
Jie Ji,Amir Khajepour,William Melek,Yanjun Huang
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2017-02-01
卷期号:66 (2): 952-964
被引量:723
标识
DOI:10.1109/tvt.2016.2555853
摘要
A path planning and tracking framework is presented to maintain a collision-free path for autonomous vehicles. For path-planning approaches, a 3-D virtual dangerous potential field is constructed as a superposition of trigonometric functions of the road and the exponential function of obstacles, which can generate a desired trajectory for collision avoidance when a vehicle collision with obstacles is likely to happen. Next, to track the planned trajectory for collision avoidance maneuvers, the path-tracking controller formulated the tracking task as a multiconstrained model predictive control (MMPC) problem and calculated the front steering angle to prevent the vehicle from colliding with a moving obstacle vehicle. Simulink and CarSim simulations are conducted in the case where moving obstacles exist. The simulation results show that the proposed path-planning approach is effective for many driving scenarios, and the MMPC-based path-tracking controller provides dynamic tracking performance and maintains good maneuverability.
科研通智能强力驱动
Strongly Powered by AbleSci AI