Comparison and combination of “direct” and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

耦合簇 微扰理论(量子力学) 星团(航天器) 片段(逻辑) 摄动(天文学) 物理 统计物理学 相关性 分子 化学 量子力学 计算机科学 算法 数学 几何学 程序设计语言
作者
Yang Guo,Ute Becker,Frank Neese
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:148 (12) 被引量:54
标识
DOI:10.1063/1.5021898
摘要

Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzww完成签到,获得积分10
1秒前
ldngis完成签到,获得积分10
10秒前
10秒前
启航123完成签到 ,获得积分10
12秒前
情怀应助Huanglj采纳,获得20
15秒前
忧虑的代容完成签到,获得积分10
16秒前
17秒前
顾矜应助马燚采纳,获得10
18秒前
冰山未闯完成签到,获得积分10
18秒前
18秒前
姚姚的赵赵完成签到,获得积分20
20秒前
GXY完成签到,获得积分10
21秒前
科研通AI5应助neeeru采纳,获得30
24秒前
28秒前
xiaozhang发布了新的文献求助10
28秒前
30秒前
陈豆豆发布了新的文献求助10
30秒前
宇星发布了新的文献求助10
32秒前
小康学弟完成签到 ,获得积分10
35秒前
江高波发布了新的文献求助10
35秒前
奋斗的小王医生完成签到,获得积分10
37秒前
SciGPT应助crack采纳,获得10
37秒前
CKK完成签到,获得积分10
38秒前
科研通AI5应助灵儿采纳,获得10
43秒前
43秒前
43秒前
44秒前
多喝水完成签到,获得积分10
44秒前
gstaihn发布了新的文献求助10
46秒前
多喝水发布了新的文献求助10
48秒前
49秒前
李健应助江高波采纳,获得10
50秒前
夹心完成签到,获得积分20
51秒前
刘帅帅完成签到,获得积分20
52秒前
54秒前
54秒前
zcz完成签到 ,获得积分10
58秒前
司徒不二完成签到,获得积分0
59秒前
灵儿发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169608
求助须知:如何正确求助?哪些是违规求助? 3704949
关于积分的说明 11691971
捐赠科研通 3391744
什么是DOI,文献DOI怎么找? 1860072
邀请新用户注册赠送积分活动 920239
科研通“疑难数据库(出版商)”最低求助积分说明 832631