已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network

作业车间调度 计算机科学 工作车间 动态优先级调度 调度(生产过程) 马尔可夫决策过程 数学优化 概括性 强化学习 运筹学 流水车间调度 分布式计算 人工智能 工业工程 地铁列车时刻表 马尔可夫过程 工程类 心理治疗师 操作系统 统计 数学 心理学
作者
Yuxin Li,Wenbin Gu,Minghai Yuan,Tang Ya-ming
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:74: 102283-102283 被引量:207
标识
DOI:10.1016/j.rcim.2021.102283
摘要

With the extensive application of automated guided vehicles in manufacturing system, production scheduling considering limited transportation resources becomes a difficult problem. At the same time, the real manufacturing system is prone to various disturbance events, which increase the complexity and uncertainty of shop floor. To this end, this paper addresses the dynamic flexible job shop scheduling problem with insufficient transportation resources (DFJSP-ITR) to minimize the makespan and total energy consumption. As a sequential decision-making problem, DFJSP-ITR can be modeled as a Markov decision process where the agent should determine the scheduling object and allocation of resources at each decision point. So this paper adopts deep reinforcement learning to solve DFJSP-ITR. In this paper, the multiobjective optimization model of DFJSP-ITR is established. Then, in order to make agent learn to choose the appropriate rule based on the production state at each decision point, a hybrid deep Q network (HDQN) is developed for this problem, which combines deep Q network with three extensions. Moreover, the shop floor state model is established at first, and then the decision point, generic state features, genetic-programming-based action space and reward function are designed. Based on these contents, the training method using HDQN and the strategy for facing new job insertions and machine breakdowns are proposed. Finally, comprehensive experiments are conducted, and the results show that HDQN has superiority and generality compared with current optimization-based approaches, and can effectively deal with disturbance events and unseen situations through learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tendency完成签到 ,获得积分10
1秒前
whj完成签到 ,获得积分10
1秒前
健忘幻儿完成签到,获得积分10
1秒前
5秒前
a涵发布了新的文献求助10
5秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
6秒前
端庄谷南完成签到 ,获得积分10
7秒前
7秒前
8秒前
好好学习完成签到 ,获得积分10
11秒前
健忘幻儿发布了新的文献求助10
12秒前
zhenghangbin发布了新的文献求助10
12秒前
未来可期发布了新的文献求助30
18秒前
Spine Lin发布了新的文献求助30
20秒前
领导范儿应助a涵采纳,获得10
21秒前
健康的青槐完成签到 ,获得积分10
22秒前
大先生完成签到,获得积分10
25秒前
27秒前
27秒前
MCRing完成签到,获得积分10
29秒前
大先生发布了新的文献求助10
30秒前
花里尘完成签到,获得积分10
31秒前
ouo发布了新的文献求助10
32秒前
和平鸽完成签到,获得积分10
34秒前
34秒前
36秒前
ITACHI发布了新的文献求助10
38秒前
40秒前
40秒前
科研通AI6应助伶俐惜萱采纳,获得10
42秒前
小珂完成签到,获得积分10
43秒前
44秒前
by发布了新的文献求助10
45秒前
qu完成签到 ,获得积分10
46秒前
46秒前
张志超发布了新的文献求助10
48秒前
霸气灵松完成签到 ,获得积分10
49秒前
ITACHI完成签到,获得积分10
50秒前
叶95发布了新的文献求助10
50秒前
爱笑的毛衣完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270