亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

When and why PINNs fail to train: A neural tangent kernel perspective

梯度下降 人工神经网络 计算机科学 切线 极限(数学) 算法 应用数学 核(代数) 趋同(经济学) 数学 数学优化 人工智能 数学分析 几何学 离散数学 经济增长 经济
作者
Sifan Wang,Xinling Yu,Paris Perdikaris
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:449: 110768-110768 被引量:655
标识
DOI:10.1016/j.jcp.2021.110768
摘要

Physics-informed neural networks (PINNs) have lately received great attention thanks to their flexibility in tackling a wide range of forward and inverse problems involving partial differential equations. However, despite their noticeable empirical success, little is known about how such constrained neural networks behave during their training via gradient descent. More importantly, even less is known about why such models sometimes fail to train at all. In this work, we aim to investigate these questions through the lens of the Neural Tangent Kernel (NTK); a kernel that captures the behavior of fully-connected neural networks in the infinite width limit during training via gradient descent. Specifically, we derive the NTK of PINNs and prove that, under appropriate conditions, it converges to a deterministic kernel that stays constant during training in the infinite-width limit. This allows us to analyze the training dynamics of PINNs through the lens of their limiting NTK and find a remarkable discrepancy in the convergence rate of the different loss components contributing to the total training error. To address this fundamental pathology, we propose a novel gradient descent algorithm that utilizes the eigenvalues of the NTK to adaptively calibrate the convergence rate of the total training error. Finally, we perform a series of numerical experiments to verify the correctness of our theory and the practical effectiveness of the proposed algorithms. The data and code accompanying this manuscript are publicly available at https://github.com/PredictiveIntelligenceLab/PINNsNTK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
17秒前
49秒前
狮子发布了新的文献求助10
55秒前
56秒前
瞿寒完成签到,获得积分10
58秒前
1分钟前
孙燕应助重要纸飞机采纳,获得10
1分钟前
1分钟前
cctv18完成签到,获得积分0
1分钟前
x夏天完成签到 ,获得积分10
1分钟前
狮子完成签到,获得积分10
1分钟前
4652376完成签到 ,获得积分10
1分钟前
孙燕应助狮子采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
所所应助谦让的西装采纳,获得10
2分钟前
4分钟前
天天快乐应助轮回1奇点采纳,获得10
5分钟前
6分钟前
kbcbwb2002完成签到,获得积分10
6分钟前
6分钟前
拼搏的败完成签到 ,获得积分10
7分钟前
Jj7完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
科研通AI5应助卡卡啊采纳,获得10
8分钟前
酷波er应助我要发nature采纳,获得10
8分钟前
轮回1奇点发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
卡卡啊发布了新的文献求助10
8分钟前
杨怂怂完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
充电宝应助重要纸飞机采纳,获得30
9分钟前
9分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833784
求助须知:如何正确求助?哪些是违规求助? 3376248
关于积分的说明 10492435
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771815