Revolutionizing enzyme engineering through artificial intelligence and machine learning

定向进化 蛋白质工程 人工智能 范围(计算机科学) 计算机科学 分子工程 合成生物学 机器学习 生化工程 数据科学 工程类 纳米技术 计算生物学 生物 生物化学 基因 突变体 材料科学 程序设计语言
作者
Nitu Singh,Sunny Malik,Anvita Gupta,Kinshuk Raj Srivastava
出处
期刊:Emerging topics in life sciences [Portland Press]
卷期号:5 (1): 113-125 被引量:37
标识
DOI:10.1042/etls20200257
摘要

The combinatorial space of an enzyme sequence has astronomical possibilities and exploring it with contemporary experimental techniques is arduous and often ineffective. Multi-target objectives such as concomitantly achieving improved selectivity, solubility and activity of an enzyme have narrow plausibility under approaches of restricted mutagenesis and combinatorial search. Traditional enzyme engineering approaches have a limited scope for complex optimization due to the requirement of a priori knowledge or experimental burden of screening huge protein libraries. The recent surge in high-throughput experimental methods including Next Generation Sequencing and automated screening has flooded the field of molecular biology with big-data, which requires us to re-think our concurrent approaches towards enzyme engineering. Artificial Intelligence (AI) and Machine Learning (ML) have great potential to revolutionize smart enzyme engineering without the explicit need for a complete understanding of the underlying molecular system. Here, we portray the role and position of AI techniques in the field of enzyme engineering along with their scope and limitations. In addition, we explain how the traditional approaches of directed evolution and rational design can be extended through AI tools. Recent successful examples of AI-assisted enzyme engineering projects and their deviation from traditional approaches are highlighted. A comprehensive picture of current challenges and future avenues for AI in enzyme engineering are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIAHAO完成签到,获得积分10
1秒前
啧啧啧啧发布了新的文献求助10
1秒前
紫色de泡沫完成签到,获得积分10
1秒前
隐形曼青应助懒洋洋采纳,获得10
2秒前
大模型应助laowosi采纳,获得10
2秒前
4秒前
kyouu完成签到,获得积分10
5秒前
从容的盼晴完成签到,获得积分10
5秒前
荡秋千的猴子完成签到,获得积分10
5秒前
科研渣渣完成签到,获得积分10
5秒前
Li1201完成签到,获得积分10
6秒前
没名字完成签到,获得积分10
6秒前
7秒前
斯文败类应助箴琪采纳,获得10
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
8秒前
啧啧啧啧完成签到,获得积分10
8秒前
小郑顺利毕业完成签到,获得积分10
9秒前
leslie完成签到 ,获得积分10
11秒前
顾矜应助xxx采纳,获得10
12秒前
12秒前
13秒前
鸭心完成签到,获得积分10
13秒前
13秒前
lily发布了新的文献求助50
13秒前
轩子发布了新的文献求助10
14秒前
14秒前
222完成签到,获得积分10
14秒前
Beni发布了新的文献求助10
14秒前
zhonglv7应助半夏采纳,获得10
14秒前
14秒前
桐桐应助爱笑擎苍采纳,获得10
15秒前
laowosi发布了新的文献求助10
16秒前
16秒前
17秒前
chenqiumu应助余生采纳,获得30
17秒前
17秒前
科研通AI5应助cc6521采纳,获得10
18秒前
elixir完成签到,获得积分20
18秒前
yawong完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746724
求助须知:如何正确求助?哪些是违规求助? 4094243
关于积分的说明 12666636
捐赠科研通 3806161
什么是DOI,文献DOI怎么找? 2101295
邀请新用户注册赠送积分活动 1126623
关于科研通互助平台的介绍 1003174