降噪
计算机科学
人工智能
噪音(视频)
深度学习
光学(聚焦)
机器学习
计算机视觉
模式识别(心理学)
图像(数学)
物理
光学
作者
Romain F. Laine,Guillaume Jacquemet,Alexander Krull
标识
DOI:10.1016/j.biocel.2021.106077
摘要
Fluorescence microscopy enables the direct observation of previously hidden dynamic processes of life, allowing profound insights into mechanisms of health and disease. However, imaging of live samples is fundamentally limited by the toxicity of the illuminating light and images are often acquired using low light conditions. As a consequence, images can become very noisy which severely complicates their interpretation. In recent years, deep learning (DL) has emerged as a very successful approach to remove this noise while retaining the useful signal. Unlike classical algorithms which use well-defined mathematical functions to remove noise, DL methods learn to denoise from example data, providing a powerful content-aware approach. In this review, we first describe the different types of noise that typically corrupt fluorescence microscopy images and introduce the denoising task. We then present the main DL-based denoising methods and their relative advantages and disadvantages. We aim to provide insights into how DL-based denoising methods operate and help users choose the most appropriate tools for their applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI