材料科学
合金
微观结构
等轴晶
纳米晶材料
微晶
纳米压痕
压痕硬度
纹理(宇宙学)
复合材料
相(物质)
冶金
纳米技术
计算机科学
有机化学
化学
人工智能
图像(数学)
作者
Maria A. Surmeneva,Irina Yu. Grubova,Natalia Glukhova,Dmitriy Khrapov,Andrey Koptyug,Anastasia Volkova,Yu. F. Ivanov,Cosmin Mihai Cotruţ,Alina Vlădescu,А. Д. Тересов,N. N. Koval,Alexander Tyurin,Roman A. Surmenev
出处
期刊:Metals
[Multidisciplinary Digital Publishing Institute]
日期:2021-07-01
卷期号:11 (7): 1066-1066
被引量:27
摘要
High-current pulsed electron-beam (PEB) treatment was applied as a surface finishing procedure for Ti–35Nb–7Zr–5Ta (TNZT) alloy produced by electron beam melting (EBM). According to the XRD results the TNZT alloy samples before and after the PEB treatment have shown mainly the single body-centered cubic (bcc) β-phase microstructures. The crystallite size, dislocation density, and microstrain remain unchanged after the PEB treatment. The investigation of the texture coefficient at the different grazing angle revealed the evolution of the crystallite orientations at the re-melted zone formed at the top of the bulk samples after the PEB treatment. The top-view SEM micrographs of the TNZT samples treated by PEB exhibited the bcc β-phase grains with an average size of ~85 μm. TEM analysis of as-manufactured TNZT alloy revealed the presence of the equiaxed β-grains with the fine dispersion of nanocrystalline α and NbTi4 phases together with β-Ti twins. Meanwhile, the β phase regions free of α phase precipitation are observed in the microstructure after the PEB irradiation. Nanoindentation tests revealed that the surface mechanical properties of the melted zone were slightly improved. However, the elastic modulus and microhardness in the heat-affected zone and the deeper regions of the sample were not changed after the treatment. Moreover, the TNZT alloy in the bulk region manufactured by EBM displayed no significant change in the corrosion resistance after the PEB treatment. Hence, it can be concluded that the PEB irradiation is a viable approach to improve the surface topography of EBM-manufactured TNZT alloy, while the most important mechanical parameters remain unchanged.
科研通智能强力驱动
Strongly Powered by AbleSci AI