材料科学
弹性体
自愈
软机器人
弹性(材料科学)
计算机科学
纳米技术
模块化设计
硅酮
机器人
复合材料
人工智能
医学
替代医学
病理
操作系统
作者
Yin Cheng,Kwok Hoe Chan,Xiao‐Qiao Wang,Tianpeng Ding,Tongtao Li,Chen Zhang,Wanheng Lu,Yi Zhou,Ghim Wei Ho
标识
DOI:10.1002/adfm.202101825
摘要
Abstract Intrinsically self‐healing stretchable polymers have been intensively explored for soft robotic applications due to their mechanical compliance and damage resilience. However, their prevalent use in real‐world robotic applications is currently hindered by various limitations such as low mechanical strength, long healing time, and external energy input requirements. Here, a self‐healing supramolecular magnetic elastomer (SHSME), featuring a hierarchical dynamic polymer network with abundant reversible bonds, is introduced. The SHSME exhibits high mechanical strength (Young's modulus of 1.2 MPa, similar to silicone rubber) and fast self‐healing capability (300% stretch strain after 5 s autonomous repair at ambient temperature). A few SHSME‐based robotic demonstrations, namely, rapid amphibious function recovery, modular‐assembling‐prototyping soft robots with complex geometries and diverse functionalities, as well as a dismembering–navigation–assembly strategy for robotic tasking in confined spaces are showcased. Notably, the SHSME framework supports circular material design, as it is thermoreformable for recycling, demonstrates autorepair for extended lifespan, and is modularizable for customized constructs and functions.
科研通智能强力驱动
Strongly Powered by AbleSci AI