Engineering mechanobiology through organoids‐on‐chip: A strategy to boost therapeutics

机械生物学 芯片上器官 背景(考古学) 类有机物 再生医学 组织工程 药物开发 机械转化 计算机科学 神经科学 纳米技术 微流控 生物 工程类 生物医学工程 细胞生物学 干细胞 药品 材料科学 药理学 古生物学
作者
Letícia Emiliano Charelli,João P D Ferreira,Carolina P. Naveira-Cotta,Tiago Albertini Balbino
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:15 (11): 883-899 被引量:12
标识
DOI:10.1002/term.3234
摘要

The mechanical environment of living cells is as critical as chemical signaling. Mechanical stimuli play a pivotal role in organogenesis and tissue homeostasis. Unbalances in mechanotransduction pathways often lead to diseases, such as cancer, cystic fibrosis, and neurodevelopmental disorders. Despite its inherent relevance, there is a lack of proper mechanoresponsive in vitro study systems. In this context, there is an urge to engineer innovative, robust, dynamic, and reliable organotypic technologies to better connect cellular processes to organ-level function and multi-tissue cross-talk. Mechanically active organoid-on-chip has the potential to surpass this challenge. These systems converge microfabrication, microfluidics, biophysics, and tissue engineering fields to emulate key features of living organisms, hence, reducing costs, time, and animal testing. In this review, we intended to present cutting-edge organ-on-chip platforms that integrate biomechanical stimuli as well as novel multicellular culture, such as organoids. We focused on its application in two main fields: precision medicine and drug development. Moreover, we also discussed the state of the art for the development of an engineered model to assess patient-derived tumor organoid metastatic potential. Finally, we highlighted the current drawbacks and emerging opportunities to match the industry needs. We envision the use of mechanoresponsive organotypic-on-chip microdevices as an indispensable tool for precision medicine, drug development, disease modeling, tissue engineering, and developmental biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
混子完成签到,获得积分10
刚刚
nortun发布了新的文献求助10
刚刚
1秒前
花花完成签到,获得积分10
3秒前
海底捞水果完成签到,获得积分10
3秒前
4秒前
鹏gg完成签到 ,获得积分10
4秒前
5秒前
5秒前
nortun完成签到,获得积分10
6秒前
Zfy完成签到,获得积分10
6秒前
Ava应助贤惠的英姑采纳,获得10
6秒前
个性的紫菜应助Sara采纳,获得10
7秒前
黄垚发布了新的文献求助10
7秒前
田田发布了新的文献求助10
7秒前
SCINEXUS应助susui采纳,获得10
8秒前
公衍尚完成签到,获得积分10
8秒前
万能图书馆应助依古比古采纳,获得10
8秒前
魔幻凝云发布了新的文献求助10
9秒前
9秒前
黄垚完成签到,获得积分10
12秒前
12秒前
zora完成签到,获得积分10
12秒前
大聪明发布了新的文献求助10
13秒前
Lumi完成签到,获得积分10
14秒前
小董的学习之路完成签到,获得积分10
15秒前
16秒前
stella发布了新的文献求助10
16秒前
vv完成签到,获得积分20
16秒前
MENG完成签到,获得积分10
17秒前
17秒前
Dabiel1213完成签到,获得积分10
17秒前
18秒前
CodeCraft应助wanhe采纳,获得10
18秒前
19秒前
坚强一笑完成签到,获得积分20
19秒前
muyingleng应助胡质斌采纳,获得10
20秒前
22秒前
依古比古发布了新的文献求助10
22秒前
小灰发布了新的文献求助20
22秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387865
求助须知:如何正确求助?哪些是违规求助? 2094376
关于积分的说明 5272747
捐赠科研通 1821076
什么是DOI,文献DOI怎么找? 908483
版权声明 559300
科研通“疑难数据库(出版商)”最低求助积分说明 485355