Strategies for targeting senescent cells in human disease

衰老 旁分泌信号 生物 癌变 疾病 表型 细胞生物学 生物信息学 细胞 医学 癌症 癌症研究 神经科学 病理 受体 遗传学 基因
作者
Nathan Gasek,George A. Kuchel,James L. Kirkland,Ming Xu
出处
期刊:Nature Aging 卷期号:1 (10): 870-879 被引量:352
标识
DOI:10.1038/s43587-021-00121-8
摘要

Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence facilitates programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing senolytic agents or therapies that inhibit the senescence-associated secretory phenotype have demonstrated benefit in both preclinical and clinical models of geriatric decline and chronic diseases, suggesting that senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function and tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically ill. This Review summarizes current research on cellular senescence including its molecular basis and examines how drugs may be targeted against senescent cells to treat age-related multimorbidities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Karol采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
AWMKK应助文件撤销了驳回
3秒前
4秒前
盛夏应助大直采纳,获得10
4秒前
apoptoxin4896发布了新的文献求助10
5秒前
负责雪珊发布了新的文献求助10
5秒前
张龙雨完成签到,获得积分10
5秒前
帅气寒松完成签到,获得积分10
5秒前
wanci应助leo采纳,获得10
5秒前
上官若男应助zcx采纳,获得10
5秒前
哈哈尼发布了新的文献求助10
5秒前
zebra8848完成签到,获得积分10
7秒前
7秒前
欢呼的纹应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
8秒前
无辜馒头应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
sjj完成签到,获得积分20
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
搜集达人应助睡醒了采纳,获得10
9秒前
simon发布了新的文献求助10
10秒前
13秒前
13秒前
复古红发布了新的文献求助30
13秒前
乐观小之应助Karol采纳,获得10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916154
求助须知:如何正确求助?哪些是违规求助? 3461715
关于积分的说明 10918533
捐赠科研通 3188554
什么是DOI,文献DOI怎么找? 1762704
邀请新用户注册赠送积分活动 853070
科研通“疑难数据库(出版商)”最低求助积分说明 793649