Rice disease segmentation method based on CBAM-CARAFE-DeepLabv3+

特征(语言学) 分割 人工智能 计算机科学 模式识别(心理学) 哲学 语言学
作者
Wei Zeng,Mingfang He
出处
期刊:Crop Protection [Elsevier BV]
卷期号:180: 106665-106665 被引量:9
标识
DOI:10.1016/j.cropro.2024.106665
摘要

Rice is an important food crop, but it is susceptible to diseases during its growth process. Rapid, accurate, and effective identification of rice diseases is important for targeted measures to control disease spread. It is crucial for improving rice yield and quality. Therefore, this study proposes a CBAM-CARAFE-DeepLabv3+ rice disease segmentation method that combines attention mechanisms and feature recombination. This method focuses on three common diseases in rice growth: bacterial blight, blast, and brown spot disease. To enhance the extraction of favorable features, the algorithm adopts CBAM-RepViT as the backbone network. That is, the Squeeze-and-Excitation (SE) attention mechanism embedded in the efficient and lightweight RepViT network is replaced by the lightweight Convolutional Block Attention Module (CBAM). Compared to the SE attention mechanism, CBAM introduces a spatial attention module that focuses on important spatial positions in the feature map. It allows the model to extract more rich and detailed feature information by attending to both the channel and spatial dimensions of the feature map. Additionally, to further improve the feature extraction ability and image edge segmentation accuracy during upsampling, the lightweight Content-Aware ReAssembly of FEatures (CARAFE) operator is introduced into the decoding module for upsampling. Finally, to address the issue of imbalance between foreground and background pixel ratios in rice disease, a hybrid loss function composed of cross-entropy (CE) loss and Dice loss is proposed. Experimental results show that, compared to other networks such as DeepLabv3+, the proposed CBAM-CARAFE-DeepLabv3+ method achieves further improvement in segmentation accuracy, providing a new method for the development of rice disease segmentation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助Singsea采纳,获得10
2秒前
刘哔完成签到,获得积分10
3秒前
4秒前
剁椒鱼头完成签到 ,获得积分10
5秒前
hahhahahh发布了新的文献求助10
5秒前
yanghui完成签到,获得积分20
7秒前
kjhkj发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
邝边边完成签到,获得积分10
13秒前
14秒前
kjhkj完成签到,获得积分10
15秒前
韩hqf发布了新的文献求助10
18秒前
Orange应助怡然幼枫采纳,获得10
19秒前
ccq完成签到,获得积分10
20秒前
淡淡书白完成签到,获得积分10
21秒前
rachel03发布了新的文献求助10
22秒前
娟娟完成签到 ,获得积分10
23秒前
Ava应助科研通管家采纳,获得10
24秒前
24秒前
ED应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
SherlockJia应助科研通管家采纳,获得10
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
25秒前
gnufgg完成签到,获得积分10
25秒前
笑点低的靳完成签到,获得积分10
26秒前
宛宛完成签到,获得积分0
33秒前
怡然凝云完成签到,获得积分10
36秒前
bc举报无辜的熊猫求助涉嫌违规
36秒前
852应助ShiRz采纳,获得10
37秒前
华仔应助MQQ采纳,获得30
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275