计算机科学
异常检测
水准点(测量)
人工智能
特征(语言学)
班级(哲学)
模式识别(心理学)
语义学(计算机科学)
编码器
发电机(电路理论)
对象(语法)
噪音(视频)
数据建模
目标检测
特征提取
数据挖掘
机器学习
图像(数学)
物理
操作系统
语言学
哲学
功率(物理)
大地测量学
量子力学
数据库
程序设计语言
地理
标识
DOI:10.1109/icassp48485.2024.10446794
摘要
Most existing methods for unsupervised industrial anomaly detection train a separate model for each object category. This kind of approach can easily capture the category-specific feature distributions, but results in high storage cost and low training efficiency. In this paper, we propose a unified mixed-attention auto encoder (MAAE) to implement multi-class anomaly detection with a single model. To alleviate the performance degradation due to the diverse distribution patterns of different categories, we employ spatial attentions and channel attentions to effectively capture the global category information and model the feature distributions of multiple classes. Furthermore, to simulate the realistic noises on features and preserve the surface semantics of objects from different categories which are essential for detecting the subtle anomalies, we propose an adaptive noise generator and a multi-scale fusion module for the pre-trained features. MAAE delivers remarkable performances on the benchmark dataset compared with the state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI