残余物
断层(地质)
转换器
故障检测与隔离
特征提取
计算机科学
故障指示器
代表(政治)
节点(物理)
功率(物理)
人工智能
特征学习
故障覆盖率
模式识别(心理学)
陷入故障
工程类
算法
电子线路
物理
电气工程
结构工程
量子力学
地震学
政治
政治学
法学
执行机构
地质学
作者
Shiqi Zhang,Rongjie Wang,Libao Wang,Yupeng Si,Anhui Lin,Yichun Wang
标识
DOI:10.1109/tim.2023.3265095
摘要
In practical fault diagnosis, the monitoring fault data is accumulated incrementally, it is necessary to detect the newly added fault data. To this end, this paper proposed a broad residual network (BRES) fault diagnosis method with incremental learning capability. Firstly, the deep feature representation of the raw data is obtained by the residual network, and the obtained features and corresponding labels are then updated to the BLS. For the newly collected data, the incremental learning of new fault modes is achieved by automatic feature extraction of the ResNet and the node expansion of the BLS. The effectiveness of the proposed method is verified by motor-driven converters fault diagnosis. Experimental results indicate that the method can effectively update the diagnosis model to incrementally learn new fault categories and new fault modes.
科研通智能强力驱动
Strongly Powered by AbleSci AI