Transformer-based Model for fMRI Data: ABIDE Results

变压器 计算机科学 电气工程 工程类 电压
作者
Wenhui Li,Shiyuan Wang,Guangyuan Liu
标识
DOI:10.1109/icccs55155.2022.9845999
摘要

Functional magnetic resonance imaging (fMRI), which is a non-invasive technique for measuring brain signals, is widely used in the diagnosis of Alzheimer's disease (AD), Autistic spectrum disorder (ASD), Depression, and other brain neurological diseases. In the current research, fMRI signals are usually analyzed using convolutional neural network (CNN) and recurrent neural network (RNN). However, these models are ineffective when considering the relationship between nonadjacent brain regions and analyzing long-time span fMRI signals. Transformer, which completely abandons the architecture of the traditional neural network, can overcome the above limitations through positional decoding and self-attention mechanism. In this study, a transformer-based model is proposed, which is the first time to apply transformer to fMRI data analysis. In addition, positional decoding is an essential part of transformer. Functional connection matrix is creatively used as the positional decoding of transformer-based model for fMRI data. The autism brain imaging data exchange (ABIDE) dataset is used to evaluate this model. The transformer-based model achieved a classification accuracy of 74.18% using subject-wise 10-fold cross-validation. It cannot exceed the classification accuracy (79.50%) of the state-of-the-art model based on hand-engineered features but exceed the highest classification accuracy (74.00%) of the model based on original fMRI image data in ABIDE dataset. This study provides a transformer-based model for original fMRI data, which is helpful to realize the early diagnosis of ASD, AD, Depression, and other neurological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄豆酱发布了新的文献求助10
1秒前
1秒前
小太阳哈哈完成签到 ,获得积分10
1秒前
香蕉觅云应助Alan采纳,获得10
2秒前
2秒前
3秒前
3秒前
kk发布了新的文献求助10
3秒前
大风起兮完成签到,获得积分10
4秒前
西宁完成签到,获得积分10
4秒前
wkjfh举报大苗求助涉嫌违规
4秒前
5秒前
可爱的函函应助鲜于灵竹采纳,获得10
5秒前
ww发布了新的文献求助10
6秒前
6秒前
Dawn发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
甜蜜的睿渊完成签到,获得积分10
9秒前
qian发布了新的文献求助10
9秒前
9秒前
小汤圆发布了新的文献求助10
9秒前
9秒前
10秒前
AAA发布了新的文献求助10
11秒前
领导范儿应助胡杨树2006采纳,获得10
11秒前
11秒前
gorgeous发布了新的文献求助10
12秒前
12秒前
RiziaJahanRiza完成签到,获得积分20
12秒前
xiaokun发布了新的文献求助10
12秒前
13秒前
14秒前
李健应助燕儿采纳,获得10
14秒前
14秒前
乖巧的菜猪完成签到,获得积分10
15秒前
xccpp发布了新的文献求助10
17秒前
17秒前
RRR发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202