Multi-modal CT Perfusion-based Deep Learning for Predicting Stroke Lesion Outcomes in Complete and No Recanalization Scenarios

半影 医学 冲程(发动机) 溶栓 灌注扫描 放射科 病变 灌注 深度学习 模态(人机交互) 急性中风 再灌注治疗 核医学 内科学 缺血 人工智能 外科 心肌梗塞 组织纤溶酶原激活剂 计算机科学 工程类 机械工程
作者
Hongxi Yang,Yasmeen George,Deval Mehta,Longting Lin,Chushuang Chen,David T. Yang,Jiacheng Sun,Kenneth K. Lau,Chris Bain,Qing Yang,Mark W. Parsons,Zongyuan Ge
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A9016-ajnr.A9016
标识
DOI:10.3174/ajnr.a9016
摘要

Predicting the final location and volume of lesions in acute ischemic stroke (AIS) is crucial for clinical management. While CT perfusion (CTP) imaging is routinely used for estimating lesion outcomes, conventional threshold-based methods have limitations. We developed specialized outcome prediction deep learning models that predict infarct core in successful reperfusion cases and the combined core-penumbra region in unsuccessful reperfusion cases. We developed single-modal and multi-modal deep learning models using CTP parameter maps to predict the final infarct lesion on follow-up diffusion-weighted imaging (DWI). Using a multi-center dataset from multiple sites, deep learning models were developed and evaluated separately for patients with complete recanalization (CR, successful reperfusion, n=350) and no recanalization (NR, unsuccessful reperfusion, n=138) after treatment. The CR model was designed to predict the infarct core region, while the NR model predicted the expanded hypoperfused tissue encompassing both core and penumbra regions. Five-fold cross-validation was performed for robust evaluation. The multi-modal 3D nnU-Net model demonstrated superior performance, achieving mean Dice scores of 35.36% in CR patients and 50.22% in NR patients. This significantly outperformed the current clinical used method, providing more accurate outcome estimates than the conventional single-modality threshold-based measures which yielded dice scores of 15.73% and 39.71% for CR and NR groups respectively. Our approach offered both successful reperfusion and unsuccessful reperfusion estimations for potential treatment outcomes, enabling clinicians to better evaluate treatment eligibility for reperfusion therapies and assess potential treatment benefits. This advancement facilitates more personalized treatment recommendations and has the potential to significantly enhance clinical decision-making in AIS management by providing more accurate tissue outcome predictions than conventional single-modality threshold-based approaches. AIS=acute ischemic stroke; CR=complete recanalization; NR=no recanalization; DT=delay time; IQR=interquartile range; GT=ground truth; HD95=95% Hausdorff distance; ASSD=average symmetric surface distance; MLV=mismatch lesion volume.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助Dr.c采纳,获得10
4秒前
4秒前
lss发布了新的文献求助10
4秒前
小北发布了新的文献求助10
7秒前
gg烨发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
调皮的绿真完成签到,获得积分10
12秒前
JamesPei应助nnnd77采纳,获得10
13秒前
调皮飞绿发布了新的文献求助10
13秒前
Xccccc完成签到 ,获得积分10
16秒前
轻爱完成签到,获得积分10
16秒前
1111茗完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
共享精神应助77采纳,获得10
18秒前
共享精神应助lss采纳,获得10
18秒前
20秒前
华仔应助Dr.c采纳,获得10
21秒前
wanci应助syy采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
小明应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
22秒前
无畏发布了新的文献求助10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
gg烨完成签到,获得积分10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
SciGPT应助zyf采纳,获得10
23秒前
23秒前
bai发布了新的文献求助10
23秒前
李可完成签到 ,获得积分10
25秒前
Ellie完成签到,获得积分10
26秒前
26秒前
大模型应助李昕123采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 410
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680491
求助须知:如何正确求助?哪些是违规求助? 4056571
关于积分的说明 12543480
捐赠科研通 3751285
什么是DOI,文献DOI怎么找? 2071760
邀请新用户注册赠送积分活动 1100984
科研通“疑难数据库(出版商)”最低求助积分说明 980345