sEMG Spectral Analysis and Machine Learning Algorithms Are Able to Discriminate Biomechanical Risk Classes Associated with Manual Material Liftings

可穿戴计算机 支持向量机 计算机科学 算法 人口 工作(物理) 机器学习 接收机工作特性 时域 频域 人工智能 模式识别(心理学) 模拟 工程类 计算机视觉 医学 机械工程 环境卫生 嵌入式系统
作者
Leandro Donisi,Deborah Jacob,Lorena Guerrini,G. Prisco,Fabrizio Esposito,Mario Cesarelli,Francesco Amato,Paolo Gargiulo
出处
期刊:Bioengineering [Multidisciplinary Digital Publishing Institute]
卷期号:10 (9): 1103-1103
标识
DOI:10.3390/bioengineering10091103
摘要

Manual material handling and load lifting are activities that can cause work-related musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health proposed an equation depending on the following parameters: intensity, duration, frequency, and geometric characteristics associated with the load lifting. In this paper, we explore the feasibility of several Machine Learning (ML) algorithms, fed with frequency-domain features extracted from electromyographic (EMG) signals of back muscles, to discriminate biomechanical risk classes defined by the Revised NIOSH Lifting Equation. The EMG signals of the multifidus and erector spinae muscles were acquired by means of a wearable device for surface EMG and then segmented to extract several frequency-domain features relating to the Total Power Spectrum of the EMG signal. These features were fed to several ML algorithms to assess their prediction power. The ML algorithms produced interesting results in the classification task, with the Support Vector Machine algorithm outperforming the others with accuracy and Area under the Receiver Operating Characteristic Curve values of up to 0.985. Moreover, a correlation between muscular fatigue and risky lifting activities was found. These results showed the feasibility of the proposed methodology—based on wearable sensors and artificial intelligence—to predict the biomechanical risk associated with load lifting. A future investigation on an enriched study population and additional lifting scenarios could confirm the potential of the proposed methodology and its applicability in the field of occupational ergonomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
455应助科研通管家采纳,获得20
2秒前
zcw完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科研助手6应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Sky应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
大个应助希夷采纳,获得30
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
啵啵冰应助科研通管家采纳,获得50
3秒前
思源应助科研通管家采纳,获得10
3秒前
科研助手6应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
顺利兰完成签到 ,获得积分10
4秒前
4秒前
深情安青应助芷兰丁香采纳,获得10
5秒前
6秒前
nusiew发布了新的文献求助10
7秒前
曼波发布了新的文献求助10
7秒前
tianliyan完成签到 ,获得积分10
8秒前
BK关闭了BK文献求助
8秒前
Portafortuna完成签到,获得积分20
8秒前
Nzoth发布了新的文献求助10
9秒前
10秒前
聪聪发布了新的文献求助10
13秒前
13秒前
14秒前
西门长海完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802431
求助须知:如何正确求助?哪些是违规求助? 3348058
关于积分的说明 10336202
捐赠科研通 3063960
什么是DOI,文献DOI怎么找? 1682338
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997