Automatically optimized radiomics modeling system for small gastric submucosal tumor (<2 cm) discrimination based on EUS images

医学 放射科 无线电技术 胃肿瘤 内科学
作者
Ming‐Yan Cai,Baohui Song,Yinhui Deng,Pingting Gao,Shi‐Lun Cai,Ayimukedisi Yalikong,En‐Pan Xu,Yunshi Zhong,Jinhua Yu,Ping‐Hong Zhou
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:99 (4): 537-547.e4 被引量:5
标识
DOI:10.1016/j.gie.2023.11.006
摘要

Background and Aims The clinical management of small gastric submucosal tumors (SMTs) (<2cm) faces a non-negligible challenge due to the lack of guideline consensus and effective diagnostic tools. This paper develops an automatically optimized radiomics modeling system (AORMS) based on endoscopic ultrasound (EUS) images to diagnose and evaluate SMTs. Methods EUS images of 205 small gastric SMT (<2cm) patients were retrospectively enrolled in the development phase of AORMS, for the diagnosis and the risk stratification of gastrointestinal stromal tumor (GIST). Images of 178 patients from different centers were prospectively enrolled in the independent testing phase. The performance of the AORMS was compared to that of endoscopists in the development set and evaluated in the independent testing set. Results The AORMS demonstrated an area under the curve (AUC) of 0.762 for the diagnosis of GIST, while 0.734 for the risk stratification of GIST, respectively. In the independent testing set, the AORMS achieved an AUC of 0.770 and 0.750 for the diagnosis and risk stratification of small GISTs, respectively. In comparison, the AUC of five experienced endoscopists ranged from 0.501-0.608 for diagnosing GIST, and 0.562-0.748 for risk stratification. The AORMS outperformed experienced endoscopists by over 20% in diagnosing GIST. Conclusions The AORMS implements automatic parameter selection, which enhances its robustness and clinical applicability. It has demonstrated good performance in the diagnosis and risk stratification of GISTs, which could aid endoscopists in the diagnosis of small gastric SMTs (<2cm).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
淳于安筠发布了新的文献求助10
2秒前
Orange应助jimaohi采纳,获得10
3秒前
elle完成签到,获得积分10
3秒前
5秒前
ddd发布了新的文献求助10
5秒前
mingyahaoa完成签到,获得积分10
6秒前
上官若男应助时尚元槐采纳,获得10
7秒前
8秒前
LILILI完成签到,获得积分10
8秒前
8秒前
liars完成签到 ,获得积分10
9秒前
humble完成签到,获得积分10
9秒前
SciGPT应助狂野萤采纳,获得10
10秒前
标致书包发布了新的文献求助10
11秒前
ccm应助大力的夕阳采纳,获得10
11秒前
11秒前
SEM小菜鸡发布了新的文献求助10
13秒前
清爽老九发布了新的文献求助10
13秒前
友好驳完成签到,获得积分10
15秒前
15秒前
16秒前
酷波er应助标致书包采纳,获得10
18秒前
18秒前
李健应助SEM小菜鸡采纳,获得10
19秒前
李健应助科研王采纳,获得10
20秒前
nczpf2010发布了新的文献求助10
22秒前
冲冲冲完成签到,获得积分10
22秒前
23秒前
疯狂的天宇完成签到,获得积分10
23秒前
星辰大海应助超级幻梅采纳,获得10
24秒前
我是老大应助ddd采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4448423
求助须知:如何正确求助?哪些是违规求助? 3917218
关于积分的说明 12159502
捐赠科研通 3566570
什么是DOI,文献DOI怎么找? 1958557
邀请新用户注册赠送积分活动 997986
科研通“疑难数据库(出版商)”最低求助积分说明 893157