Advanced deep learning techniques for early disease prediction in cauliflower plants

维持 农业 粮食安全 计算机科学 作物损失 机器学习 人工智能 学习迁移 深度学习 疾病 农业工程 作物 医学 生物技术 农学 病理 生物 生态学 工程类
作者
G. Prabu Kanna,S. J. K. Jagadeesh Kumar,Yogesh Kumar,Ankur Changela,Marcin Woźniak,Jana Shafi,Muhammad Fazal Ijaz
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:21
标识
DOI:10.1038/s41598-023-45403-w
摘要

Agriculture plays a pivotal role in the economies of developing countries by providing livelihoods, sustenance, and employment opportunities in rural areas. However, crop diseases pose a significant threat to both farmers' incomes and food security. Furthermore, these diseases also show adverse effects on human health by causing various illnesses. Till date, only a limited number of studies have been conducted to identify and classify diseased cauliflower plants but they also face certain challenges such as insufficient disease surveillance mechanisms, the lack of comprehensive datasets that are properly labelled as well as are of high quality, and the considerable computational resources that are necessary for conducting thorough analysis. In view of the aforementioned challenges, the primary objective of this manuscript is to tackle these significant concerns and enhance understanding regarding the significance of cauliflower disease identification and detection in rural agriculture through the use of advanced deep transfer learning techniques. The work is conducted on the four classes of cauliflower diseases i.e. Bacterial spot rot, Black rot, Downy Mildew, and No disease which are taken from VegNet dataset. Ten deep transfer learning models such as EfficientNetB0, Xception, EfficientNetB1, MobileNetV2, EfficientNetB2, DenseNet201, EfficientNetB3, InceptionResNetV2, EfficientNetB4, and ResNet152V2, are trained and examined on the basis of root mean square error, recall, precision, F1-score, accuracy, and loss. Remarkably, EfficientNetB1 achieved the highest validation accuracy (99.90%), lowest loss (0.16), and root mean square error (0.40) during experimentation. It has been observed that our research highlights the critical role of advanced CNN models in automating cauliflower disease detection and classification and such models can lead to robust applications for cauliflower disease management in agriculture, ultimately benefiting both farmers and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho应助QJN采纳,获得10
3秒前
3秒前
忐忑的羿完成签到,获得积分10
4秒前
5秒前
落后茗茗完成签到 ,获得积分10
5秒前
科研通AI5应助呆萌的源智采纳,获得10
5秒前
azhou176完成签到,获得积分10
6秒前
sunny66cai完成签到,获得积分10
6秒前
天天快乐应助结实之卉采纳,获得30
6秒前
7秒前
7秒前
李俊梅发布了新的文献求助10
10秒前
陈展峰发布了新的文献求助10
11秒前
sunny66cai发布了新的文献求助10
12秒前
栀初发布了新的文献求助20
12秒前
15秒前
15秒前
16秒前
飞翔的霸天哥应助ma采纳,获得30
16秒前
猴子没有壳完成签到 ,获得积分10
16秒前
17秒前
缓慢的秋莲完成签到,获得积分10
18秒前
20秒前
Dicy发布了新的文献求助10
20秒前
张润泽完成签到 ,获得积分10
21秒前
21秒前
sunflower发布了新的文献求助10
21秒前
小小的我发布了新的文献求助10
24秒前
24秒前
专注丸子发布了新的文献求助10
24秒前
刘宇航发布了新的文献求助10
26秒前
爆米花应助dongqin采纳,获得10
27秒前
ZhouYW应助核桃采纳,获得20
27秒前
27秒前
liuqiuyue应助jssssssss采纳,获得20
30秒前
希望天下0贩的0应助will采纳,获得10
30秒前
朴素的元枫完成签到,获得积分20
30秒前
31秒前
ZhouYW应助可爱的小杨采纳,获得10
31秒前
桐桐应助Ed88采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336398
关于积分的说明 10280823
捐赠科研通 3053076
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761401