Exploring the Benefits of Deep Learning-Based Sensors Error Estimation for Improved Attitude and Position Accuracy

惯性测量装置 陀螺仪 计算机科学 人工智能 惯性导航系统 均方误差 深度学习 计量单位 基本事实 卷积神经网络 计算机视觉 惯性参考系 工程类 数学 航空航天工程 统计 物理 量子力学
作者
Eslam Mounier,Paulo Ricardo Marques de Araujo,Mohamed Elhabiby,Michael J. Korenberg,Aboelmagd Noureldin
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting
标识
DOI:10.33012/2023.19273
摘要

Inertial Navigation System (INS) is a primary component in various integrated navigation systems. However, the performance of INS is hindered due to the numerical integration of the measurements obtained from the Inertial Measurement Unit (IMU), which are contaminated by various sensor errors, especially with Micro-Electro-Mechanical Systems (MEMS) sensors. To address these challenges, we examine the performance of modern Deep Learning (DL) methods for mitigating such errors. Specifically, we propose a Deep Gyroscope Error (DGE) model designed to estimate and compensate for errors in the gyroscope measurements. The DGE model combines the feature extraction capabilities of a Convolutional Neural Network (CNN) with the sequential data modelling strengths of Long Short-Term Memory (LSTM). Instead of relying on high-grade IMU measurements, we distinctively employ an inverse mechanization algorithm that generates artificial IMU measurements from the integrated navigation solution states. This approach provides accurate ground truth data facilitating direct supervised learning. The proposed model was trained and verified using real data from MEMS-IMU on real road test experiments performed on a land vehicle in Kingston, Ontario, Canada. When subjected to evaluation against unseen data, the DGE model demonstrated significant improvements in standalone inertial navigation scenarios, particularly in mitigating attitude drift errors and subsequently improving position estimation. Over a uniform testing interval, the DGE model achieved an average reduction in attitude RMSE by 43.1% and in position RMSE by 25.4%. This emphasizes the efficacy of the proposed method in improving INS performance, particularly when operating in standalone mode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
popooo完成签到,获得积分10
1秒前
2秒前
2秒前
SciGPT应助大气乐儿采纳,获得10
3秒前
夜无霜666完成签到,获得积分10
3秒前
Larry1226完成签到,获得积分10
3秒前
Flipped发布了新的文献求助10
3秒前
HE完成签到,获得积分10
4秒前
隐形曼青应助齐嘉懿采纳,获得10
5秒前
5秒前
rita_sun1969发布了新的文献求助100
6秒前
6秒前
Hello应助happyyangyang采纳,获得10
6秒前
7秒前
魔幻以南发布了新的文献求助10
8秒前
wch发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
22给22的求助进行了留言
13秒前
881发布了新的文献求助10
14秒前
陈清文发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
情怀应助tao采纳,获得10
19秒前
19秒前
追寻夜安完成签到,获得积分20
19秒前
tian完成签到,获得积分10
20秒前
倪倪发布了新的文献求助10
21秒前
刺五加完成签到 ,获得积分10
21秒前
大气乐儿发布了新的文献求助10
21秒前
追寻夜安发布了新的文献求助10
22秒前
媛媛发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
nahida关注了科研通微信公众号
24秒前
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154187
求助须知:如何正确求助?哪些是违规求助? 3690063
关于积分的说明 11656431
捐赠科研通 3382265
什么是DOI,文献DOI怎么找? 1856027
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094