KinScan: AI-based rapid profiling of activity across the kinome

基诺美 仿形(计算机编程) 激酶 计算生物学 计算机科学 概化理论 药物发现 生物 生物信息学 细胞生物学 统计 数学 操作系统
作者
Rahul Brahma,Jaemin Shin,Kwang‐Hwi Cho
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:3
标识
DOI:10.1093/bib/bbad396
摘要

Abstract Kinases play a vital role in regulating essential cellular processes, including cell cycle progression, growth, apoptosis, and metabolism, by catalyzing the transfer of phosphate groups from adenosing triphosphate to substrates. Their dysregulation has been closely associated with numerous diseases, including cancer development, making them attractive targets for drug discovery. However, accurately predicting the binding affinity between chemical compounds and kinase targets remains challenging due to the highly conserved structural similarities across the kinome. To address this limitation, we present KinScan, a novel computational approach that leverages large-scale bioactivity data and integrates the Multi-Scale Context Aware Transformer framework to construct a virtual profiling model encompassing 391 protein kinases. The developed model demonstrates exceptional prediction capability, distinguishing between kinases by utilizing structurally aligned kinase binding site features derived from multiple sequence alignment for fast and accurate predictions. Through extensive validation and benchmarking, KinScan demonstrated its robust predictive power and generalizability for large-scale kinome-wide profiling and selectivity, uncovering associations with specific diseases and providing valuable insights into kinase activity profiles of compounds. Furthermore, we deployed a web platform for end-to-end profiling and selectivity analysis, accessible at https://kinscan.drugonix.com/softwares/kinscan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助YQ采纳,获得10
刚刚
DLL完成签到,获得积分10
1秒前
2秒前
rfyr发布了新的文献求助10
3秒前
研友_VZG7GZ应助不二采纳,获得10
3秒前
4秒前
xuzj完成签到,获得积分10
4秒前
5秒前
无名花生完成签到 ,获得积分0
5秒前
6秒前
6秒前
bkagyin应助夏昱采纳,获得10
6秒前
科研通AI5应助Xuexi采纳,获得10
8秒前
8秒前
zqzyyds完成签到,获得积分20
8秒前
王子慧发布了新的文献求助10
9秒前
今后应助SMILE121235采纳,获得10
9秒前
9秒前
嘻嘻哈哈完成签到 ,获得积分10
9秒前
shangx发布了新的文献求助10
9秒前
shelly发布了新的文献求助10
10秒前
12秒前
尤珩完成签到,获得积分10
13秒前
rfyr完成签到,获得积分10
13秒前
13秒前
1111发布了新的文献求助10
13秒前
调皮黑猫应助cristole采纳,获得30
14秒前
May完成签到,获得积分10
16秒前
18秒前
19秒前
Hello应助杏仁采纳,获得10
19秒前
科研通AI5应助krystian11采纳,获得10
19秒前
20秒前
Forever完成签到,获得积分10
20秒前
21秒前
echo0411发布了新的文献求助10
21秒前
21秒前
wanci应助侯一刀采纳,获得10
22秒前
完美甜瓜完成签到,获得积分10
23秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792079
求助须知:如何正确求助?哪些是违规求助? 3336334
关于积分的说明 10280285
捐赠科研通 3052927
什么是DOI,文献DOI怎么找? 1675426
邀请新用户注册赠送积分活动 803446
科研通“疑难数据库(出版商)”最低求助积分说明 761349