亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems

杂草 水准点(测量) 计算机科学 人工智能 目标检测 探测器 模式识别(心理学) 农学 地图学 地理 生物 电信
作者
Fengying Dang,Dong Chen,Yuzhen Lu,Zhaojian Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107655-107655 被引量:126
标识
DOI:10.1016/j.compag.2023.107655
摘要

Weeds are among the major threats to cotton production. Overreliance on herbicides for weed control has accelerated the evolution of herbicide-resistance in weeds and caused increasing concerns about environments, food safety and human health. Machine vision systems for automated/robotic weeding have received growing interest towards the realization of integrated, sustainable weed management. However, in the presence of unstructured field environments and significant biological variability of weeds, it remains a serious challenge to develop reliable weed identification and detection systems. A promising solution to address this challenge are the development of arge-scale, annotated image datasets of weeds specific to cropping systems and data-driven AI (artificial intelligence) models for weed detection. Among various deep learning architectures, a diversity of YOLO (You Only Look Once) detectors is well-suited for real-time application and has enjoyed great popularity for generic object detection. This study presents a new dataset (CottoWeedDet12) of weeds important to cotton production in the southern United States (U.S.); it consists of 5648 images of 12 weed classes with a total of 9370 bounding box annotations, collected under natural light conditions and at varied weed growth stages in cotton fields. A novel, comprehensive benchmark of 25 state-of-the-art YOLO object detectors of seven versions including YOLOv3, YOLOv4, Scaled-YOLOv4, YOLOR and YOLOv5, YOLOv6 and YOLOv7, has been established for weed detection on the dataset. Evaluated through the Monte-Caro cross validation with 5 replications, the detection accuracy in terms of [email protected] ranged from 88.14 % by YOLOv3-tiny to 95.22 % by YOLOv4, and the accuracy in terms of [email protected][0.5:0.95] ranged from 68.18 % by YOLOv3-tiny to 89.72 % by Scaled-YOLOv4. All the YOLO models especially YOLOv5n and YOLOv5s have shown great potential for real-time weed detection, and data augmentation could increase weed detection accuracy. Both the weed detection dataset2 and software program codes for model benchmarking in this study are publicly available3, which will be to be valuable resources for promoting future research on big data and AI-empowered weed detection and control for cotton and potentially other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Waris完成签到 ,获得积分10
6秒前
9秒前
13秒前
22秒前
NexusExplorer应助天真咖啡豆采纳,获得10
22秒前
39秒前
43秒前
科研通AI5应助www采纳,获得10
48秒前
科研通AI5应助www采纳,获得10
48秒前
科研通AI5应助www采纳,获得10
48秒前
隐形曼青应助www采纳,获得10
48秒前
科研通AI5应助www采纳,获得10
48秒前
科研通AI5应助www采纳,获得10
48秒前
科研通AI5应助www采纳,获得50
48秒前
科研通AI5应助www采纳,获得50
48秒前
科研通AI5应助www采纳,获得50
48秒前
科研通AI5应助www采纳,获得50
48秒前
hky完成签到 ,获得积分10
49秒前
科研通AI5应助天真咖啡豆采纳,获得10
54秒前
所所应助泥巴采纳,获得10
58秒前
HCCha完成签到,获得积分10
1分钟前
1分钟前
谨慎开山发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
longsiping发布了新的文献求助10
1分钟前
思源应助天真咖啡豆采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
bc应助科研通管家采纳,获得20
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
longsiping完成签到,获得积分20
1分钟前
凶狠的秀发完成签到,获得积分10
1分钟前
2分钟前
kukudou2发布了新的文献求助10
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329299
捐赠科研通 3062988
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713