UIDEF: A real-world underwater image dataset and a color-contrast complementary image enhancement framework

水下 人工智能 计算机科学 稳健性(进化) 对比度(视觉) 计算机视觉 水准点(测量) 模式识别(心理学) 地理 地图学 考古 生物化学 化学 基因
作者
Laibin Chang,H Song,Mingjie Li,Ming Xiang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:196: 415-428 被引量:3
标识
DOI:10.1016/j.isprsjprs.2023.01.007
摘要

Numerous underwater image enhancement methods have been proposed in recent years. However, these methods are mainly evaluated using synthetic datasets with similar degradation or real-world datasets with insufficient images. A benchmark dataset containing various degraded situations and real-world underwater images is needed to evaluate the performance of these methods. In this paper, we propose a Real-world Underwater Image Dataset (UIDEF), which consists of seven categories and eleven subcategories with 9200 real-world underwater images. These categories roughly cover the multiple degradation types and different shooting perspectives of common underwater imagery. Using this dataset, we conduct a qualitative and quantitative empirical comparison of eight state-of-the-art underwater image enhancement methods to evaluate their effectiveness and robustness. Considering that these methods cannot handle both color restoration and contrast enhancement of the underwater degraded images well, we present a color-contrast complementary image enhancement framework that consists of the adaptive color perception balance and multi-scale weighted fusion. The former procedure is essential to remove the color cast of original input images, while the latter defines four attentive weight maps for making the enhanced output images present a more comfortable visual perception. Extensive experiments have validated that our framework achieves relatively satisfactory performance in most cases. In addition, we demonstrate an additional application of UIDEF in reconstructing a wider-field underwater image based on multiple images with overlapping regions. The dataset is available at https://github.com/LaibinChang/UIDEF.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SJHX完成签到,获得积分10
2秒前
CipherSage应助研友_pnxBe8采纳,获得10
3秒前
忧伤的饼干完成签到,获得积分20
3秒前
6秒前
酷波er应助浪花淘尽英雄采纳,获得10
6秒前
8秒前
9秒前
11秒前
SJHX发布了新的文献求助20
14秒前
15秒前
小郭发布了新的文献求助20
16秒前
哈哈镜阿姐应助文静听南采纳,获得10
17秒前
善学以致用应助hhyghj采纳,获得10
17秒前
所所应助魔幻的小夏采纳,获得10
19秒前
啊哈哈哈完成签到 ,获得积分10
20秒前
R_完成签到,获得积分10
22秒前
刻苦的宛白应助自信松思采纳,获得10
23秒前
25秒前
程南完成签到,获得积分10
27秒前
柴桑青木应助R_采纳,获得10
27秒前
轻松元珊发布了新的文献求助10
30秒前
深情安青应助Wsh采纳,获得10
30秒前
小罗黑的完成签到 ,获得积分10
30秒前
超级灵竹完成签到,获得积分20
33秒前
刻苦的宛白应助小小森采纳,获得10
36秒前
36秒前
神山识完成签到,获得积分10
38秒前
39秒前
tong完成签到,获得积分10
41秒前
尊敬吐司完成签到,获得积分10
41秒前
42秒前
gffh完成签到,获得积分10
43秒前
芙芙吃饱饱完成签到,获得积分10
45秒前
XL123发布了新的文献求助10
46秒前
47秒前
小郭完成签到,获得积分10
48秒前
50秒前
51秒前
daheeeee发布了新的文献求助10
52秒前
悦耳小熊猫完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Potassium-ion-assisted stabilization of single-atom electrocatalyst as intrinsic Pt-like catalyst for hydrogen evolution reaction 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4334267
求助须知:如何正确求助?哪些是违规求助? 3845621
关于积分的说明 12011840
捐赠科研通 3486176
什么是DOI,文献DOI怎么找? 1913585
邀请新用户注册赠送积分活动 956704
科研通“疑难数据库(出版商)”最低求助积分说明 857405