Image quality evaluation of the Precise image CT deep learning reconstruction algorithm compared to Filtered Back-projection and iDose4: a phantom study at different dose levels

成像体模 迭代重建 图像质量 图像噪声 重建算法 图像分辨率 氡变换 算法 数学 噪音(视频) 核医学 图像(数学) 人工智能 计算机科学 医学 数学分析
作者
Patrizio Barca,S. Domenichelli,Rita Golfieri,Luisa Pierotti,Lorenzo Spagnoli,Silvia Tomasi,Lidia Strigari
出处
期刊:Physica Medica [Elsevier BV]
卷期号:106: 102517-102517 被引量:12
标识
DOI:10.1016/j.ejmp.2022.102517
摘要

Abstract

Purpose

To characterize the performance of the Precise Image (PI) deep learning reconstruction (DLR) algorithm for abdominal Computed Tomography (CT) imaging.

Methods

CT images of the Catphan-600 phantom (equipped with an external annulus) were acquired using an abdominal protocol at four dose levels and reconstructed using FBP, iDose4 (levels 2,5) and PI (‘Soft Tissue' definition, levels ‘Sharper',‘Sharp',‘Standard',‘Smooth',‘Smoother'). Image noise, image non-uniformity, noise power spectrum (NPS), target transfer function (TTF), detectability index (d'), CT numbers accuracy and image histograms were analyzed.

Results

The behavior of the PI algorithm depended strongly on the selected level of reconstruction. The phantom analysis suggested that the PI image noise decreased linearly by varying the level of reconstruction from Sharper to Smoother, expressing a noise reduction up to 80% with respect to FBP. Additionally, the non-uniformity decreased, the histograms became narrower, and d' values increased as PI reconstruction levels changed from Sharper to Smoother. PI had no significant impact on the average CT number of different contrast objects. The conventional FBP NPS was deeply altered only by Smooth and Smoother levels of reconstruction. Furthermore, spatial resolution was found to be dose- and contrast-dependent, but in each analyzed condition it was greater than or comparable to FBP and iDose4 TTFs.

Conclusions

The PI algorithm can reduce image noise with respect to FBP and iDose4; spatial resolution, CT numbers and image uniformity are generally preserved by the algorithm but changes in NPS for the Smooth and Smoother levels need to be considered in protocols implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助啦啦啦啦采纳,获得10
刚刚
1秒前
4秒前
熬夜拜拜发布了新的文献求助10
4秒前
隐形曼青应助辛勤大米采纳,获得10
5秒前
8秒前
充电宝应助zoro采纳,获得10
9秒前
科研通AI6应助李庆采纳,获得10
9秒前
9秒前
志在山野居完成签到,获得积分10
10秒前
taotao发布了新的文献求助10
11秒前
12秒前
13秒前
所所应助Lupoate采纳,获得10
13秒前
zhong发布了新的文献求助10
13秒前
jzs完成签到 ,获得积分10
16秒前
Cloud完成签到,获得积分0
16秒前
小二郎应助123456采纳,获得10
17秒前
搜集达人应助不安妙彤采纳,获得10
17秒前
西瓜真的好圆完成签到,获得积分10
18秒前
llg发布了新的文献求助10
19秒前
白开水完成签到 ,获得积分10
23秒前
科研通AI6应助llg采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
情怀应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
31秒前
淡然如松发布了新的文献求助10
31秒前
JIECHENG完成签到 ,获得积分10
31秒前
32秒前
BINGBING1230发布了新的文献求助20
32秒前
momucy发布了新的文献求助20
34秒前
34秒前
李爱国应助123采纳,获得10
34秒前
Jimmy完成签到,获得积分10
35秒前
llzbl完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4340491
求助须知:如何正确求助?哪些是违规求助? 3848922
关于积分的说明 12019159
捐赠科研通 3490140
什么是DOI,文献DOI怎么找? 1915460
邀请新用户注册赠送积分活动 958437
科研通“疑难数据库(出版商)”最低求助积分说明 858589