Prognosis Prediction of Disulfidptosis-Related Genes in Bladder Cancer and a Comprehensive Analysis of Immunotherapy

列线图 膀胱癌 医学 免疫疗法 肿瘤科 比例危险模型 机制(生物学) 内科学 癌症 生物信息学 生物 哲学 认识论
作者
Chonghao Jiang,Yonggui Xiao,Danping Xu,Youlong Huili,Shiwen Nie,Hubo Li,Xiaohai Guan,Fenghong Cao
出处
期刊:Critical Reviews in Eukaryotic Gene Expression [Begell House]
卷期号:33 (6): 73-86 被引量:9
标识
DOI:10.1615/critreveukaryotgeneexpr.2023048536
摘要

As a newly discovered mechanism of cell death, disulfidptosis is expected to help diagnose and treat bladder cancer patients. First, data obtained from public databases were analyzed using bioinformatics techniques. SVA packages were used to combine data from different databases to remove batch effects. Then, the differential analysis and COX regression analysis of ten disulfidptosis-related genes identified four prognostically relevant differentially expressed genes which were subjected to Lasso regression for further screening to obtain model-related genes and output model formulas. The predictive power of the prognostic model was verified and the immunohistochemistry of model-related genes was verified in the HPA database. Pathway enrichment analysis was performed to identify the mechanism of bladder cancer development and progression. The tumor microenvironment and immune cell infiltration of bladder cancer patients with different risk scores were analyzed to personalize treatment. Then, information from the IMvigor210 database was used to predict the responsiveness of different risk patients to immunotherapy. The oncoPredict package was used to predict the sensitivity of patients at different risk to chemotherapy drugs, and its results have some reference value for guiding clinical use. After confirming that our model could reliably predict the prognosis of bladder cancer patients, the risk scores were combined with clinical information to create a nomogram to accurately calculate the patient survival rate. A prognostic model containing three disulfidptosis-related genes (NDUFA11, RPN1, SLC3A2) was constructed. The functional enrichment analysis and immune-related analysis indicated patients in the high-risk group were candidates for immunotherapy. The results of drug susceptibility analysis can guide more accurate treatment for bladder cancer patients and the nomogram can accurately predict patient survival. NDUFA11, RPN1, and SLC3A2 are potential novel biomarkers for the diagnosis and treatment of bladder cancer. The comprehensive analysis of tumor immune profiles indicated that patients in the high-risk group are expected to benefit from immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的煎蛋完成签到,获得积分10
2秒前
2秒前
3秒前
共享精神应助陈江河采纳,获得10
4秒前
47完成签到,获得积分10
4秒前
按摩头了完成签到,获得积分10
4秒前
mouxq发布了新的文献求助10
4秒前
剑来不来发布了新的文献求助10
8秒前
搞学术的成功女人完成签到,获得积分10
9秒前
hubanj完成签到,获得积分10
9秒前
Accpted河豚完成签到,获得积分10
10秒前
打打应助药学小团子采纳,获得10
10秒前
qian完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
Akim应助田一点采纳,获得10
14秒前
STZ发布了新的文献求助10
15秒前
年轻金毛发布了新的文献求助10
16秒前
Ice发布了新的文献求助10
16秒前
17秒前
zhangzi发布了新的文献求助10
18秒前
殷勤的雨灵完成签到,获得积分10
18秒前
李健应助sssss采纳,获得20
18秒前
高兴可乐发布了新的文献求助20
19秒前
21秒前
奥特曼发布了新的文献求助10
22秒前
25秒前
25秒前
Night关注了科研通微信公众号
25秒前
陈江河发布了新的文献求助10
26秒前
nfyyqwj发布了新的文献求助10
29秒前
29秒前
英姑应助Passion采纳,获得10
30秒前
STZ完成签到,获得积分10
30秒前
czx发布了新的文献求助10
31秒前
47关注了科研通微信公众号
32秒前
奥特曼完成签到,获得积分10
33秒前
burou发布了新的文献求助10
33秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754