化学
系列(地层学)
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
吞吐量
铅(地质)
2019-20冠状病毒爆发
2019年冠状病毒病(COVID-19)
组合化学
铅化合物
高通量筛选
纳米技术
计算生物学
生物化学
病毒学
体外
计算机科学
医学
古生物学
电信
材料科学
疾病
病理
地貌学
爆发
传染病(医学专业)
无线
生物
地质学
作者
Julien Hazemann,Thierry Kimmerlin,A. Mac Sweeney,Geoffroy Bourquin,Roland Lange,Daniel Ritz,Sylvia Richard‐Bildstein,Sylvain Regeon,Paul Czodrowski
标识
DOI:10.1021/acs.jmedchem.4c02941
摘要
In this study, we performed the hit-to-lead optimization of a SARS-CoV-2 Mpro diazepane hit (identified by computational methods in a previous work) by combining computational simulations with high-throughput medicinal chemistry (HTMC). Leveraging the 3D structural information of Mpro, we refined the original hit by targeting the S1 and S2 binding pockets of the protein. Additionally, we identified a novel exit vector pointing toward the S1' pocket, which significantly enhanced the binding affinity. This strategy enabled us to transform, rapidly with a limited number of compounds synthesized, a 14 μM hit into a potent 16 nM lead compound, for which key pharmacological properties were subsequently evaluated. This result demonstrated that combining computational technologies such as machine learning, molecular docking, and molecular dynamics simulation with HTMC can efficiently accelerate hit identification and subsequent lead generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI