Prediction Models for Falls Risk Among Inpatients: A Systematic Review and Meta‐Analysis

荟萃分析 系统回顾 梅德林 医学 心理学 内科学 政治学 法学
作者
Guichun Zhao,Ying Zhang,Jing Luo,Yahui Tong,Wenjie Sui
出处
期刊:Journal of Advanced Nursing [Wiley]
被引量:1
标识
DOI:10.1111/jan.17079
摘要

To systematically review published studies on fall risk prediction models for inpatients. A systematic review and meta-analysis of prognostic model studies. A literature search was carried out in Web of Science, the Cochrane Library, PubMed, Embase, CINAHL, SinoMed, VIP Database, CNKI and Wanfang Database. The search covered studies on risk prediction models for falls in inpatients from inception to March 9, 2024. The research question was formulated using the PICOTS framework. Data extraction was performed following the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). The quality of studies related to risk prediction models was evaluated with the Prediction Model Risk of Bias Assessment Tool (PROBAST). Meta-analysis was conducted using STATA 18.0 software. A total of 15 studies were included, with 13 eligible for meta-analysis. Only 2 of these 15 studies had external validation. The reported AUC values ranged from 0.681 to 0.900. The overall risk of bias was high, mainly attributed to inappropriate data sources and improper processing in the analysis domain. The pooled AUC from the meta-analysis was 0.799. After reviewing the predictors included in various models, FRIDs, fall history, age, gait, mental status, gender and incontinence were relatively common. The fall risk prediction model for inpatients performs well overall, but it has a high risk of bias. Future development of risk prediction models should strictly adhere to the PROBAST, combine clinical reality, optimise study design and improve methodological quality. This study provides medical professionals with a clear overview of constructing fall risk prediction models for inpatients. The fall-related predictors in these models help healthcare providers identify high-risk patients and implement preventive strategies. It also offers valuable insights for the development of future prediction models. This study did not include patient or public involvement in its design, conduct, or reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
future完成签到 ,获得积分10
2秒前
小白发布了新的文献求助10
2秒前
徐阳发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助20
4秒前
Erislastem发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
专注俊驰发布了新的文献求助10
6秒前
leeeeee发布了新的文献求助10
6秒前
王嘻嘻发布了新的文献求助10
7秒前
合适小刺猬完成签到,获得积分20
7秒前
充电宝应助安静代萱采纳,获得10
7秒前
7秒前
李爱国应助echo采纳,获得10
7秒前
xzy998发布了新的文献求助30
7秒前
雪糕刺客完成签到,获得积分20
8秒前
Hello应助徐阳采纳,获得10
8秒前
小透明发布了新的文献求助10
9秒前
9秒前
嘟嘟52edm完成签到 ,获得积分10
9秒前
ljl发布了新的文献求助10
10秒前
10秒前
10秒前
雪糕刺客发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
KYG发布了新的文献求助10
12秒前
星辰大海应助李冰冰采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
沈小小发布了新的文献求助10
13秒前
13秒前
13秒前
研友_nPP3En发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666030
求助须知:如何正确求助?哪些是违规求助? 4046878
关于积分的说明 12516972
捐赠科研通 3739456
什么是DOI,文献DOI怎么找? 2065204
邀请新用户注册赠送积分活动 1094745
科研通“疑难数据库(出版商)”最低求助积分说明 975105