已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-Driven Antimicrobial Peptide Discovery: Mining and Generation

抗菌剂 计算生物学 药物发现 化学 生物 生物化学 有机化学
作者
Paulina Szymczak,Wojciech Zarzecki,Jiejing Wang,Yiqian Duan,Jun Wang,Luís Pedro Coelho,César de la Fuente‐Núñez,Ewa Szczurek
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.0c00594
摘要

ConspectusThe escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.Artificial intelligence (AI) presents a powerful tool to revolutionize AMP discovery. By leveraging AI, we can navigate the immense sequence space more efficiently, identifying peptides with optimal therapeutic properties. This Account explores the emerging application of AI in AMP discovery, focusing on two primary strategies: AMP mining, and AMP generation, as well as the use of discriminative methods as a valuable toolbox.AMP mining involves scanning biological sequences to identify potential AMPs. Discriminative models are then used to predict the activity and toxicity of these peptides. This approach has successfully identified numerous promising candidates, which were subsequently validated experimentally, demonstrating the potential of AI in AMP design and discovery.AMP generation, on the other hand, creates novel peptide sequences by learning from existing data through generative modeling. This class of models optimizes for desired properties, such as increased activity and reduced toxicity, potentially producing synthetic peptides that surpass naturally occurring ones. Despite the risk of generating unrealistic sequences, generative models hold the promise of accelerating the discovery of highly effective and highly novel and diverse AMPs.In this Account, we describe the technical challenges and advancements in these AI-based approaches. We discuss the importance of integrating various data sources and the role of advanced algorithms in refining peptide predictions. Additionally, we highlight the future potential of AI to not only expedite the discovery process but also to uncover peptides with unprecedented properties, paving the way for next-generation antimicrobial therapies.In conclusion, the synergy between AI and AMP discovery opens new frontiers in the fight against AMR. By harnessing the power of AI, we can design novel peptides that are both highly effective and safe, offering hope for a future where AMR is no longer a looming threat. Our paper underscores the transformative potential of AI in drug discovery, advocating for its continued integration into biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ooorraee完成签到,获得积分20
1秒前
ding应助ljw采纳,获得10
1秒前
6秒前
7秒前
可耐的思远完成签到,获得积分0
8秒前
打打应助wang采纳,获得10
10秒前
ljw发布了新的文献求助10
12秒前
13秒前
大奎完成签到,获得积分10
17秒前
包容冰枫发布了新的文献求助10
19秒前
小花排草应助WEI采纳,获得20
19秒前
wang完成签到,获得积分10
20秒前
上官若男应助程许采纳,获得30
22秒前
Berthe完成签到 ,获得积分10
24秒前
29秒前
机灵的丹寒完成签到 ,获得积分10
30秒前
鬼见愁应助lilyswift采纳,获得20
30秒前
无问西东完成签到 ,获得积分10
32秒前
32秒前
向前完成签到,获得积分10
32秒前
LYQ发布了新的文献求助10
38秒前
40秒前
ljw完成签到,获得积分10
43秒前
45秒前
大个应助LYQ采纳,获得10
46秒前
47秒前
yifan326发布了新的文献求助10
48秒前
麦兜完成签到 ,获得积分10
48秒前
vt发布了新的文献求助10
51秒前
大个应助拾忆采纳,获得10
54秒前
酷波er应助阳光的毛豆采纳,获得10
56秒前
HoaryZ完成签到,获得积分10
57秒前
1分钟前
聂难敌发布了新的文献求助10
1分钟前
爆米花应助括囊采纳,获得10
1分钟前
单身的钧发布了新的文献求助10
1分钟前
1317495632a完成签到,获得积分10
1分钟前
大模型应助淡淡智宸采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
vt完成签到,获得积分20
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4167010
求助须知:如何正确求助?哪些是违规求助? 3702699
关于积分的说明 11688592
捐赠科研通 3390685
什么是DOI,文献DOI怎么找? 1859531
邀请新用户注册赠送积分活动 919800
科研通“疑难数据库(出版商)”最低求助积分说明 832431