AI-Driven Antimicrobial Peptide Discovery: Mining and Generation

抗菌剂 计算生物学 药物发现 化学 生物 生物化学 有机化学
作者
Paulina Szymczak,Wojciech Zarzecki,Jiejing Wang,Yiqian Duan,Jun Wang,Luís Pedro Coelho,César de la Fuente‐Núñez,Ewa Szczurek
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:6
标识
DOI:10.1021/acs.accounts.0c00594
摘要

ConspectusThe escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.Artificial intelligence (AI) presents a powerful tool to revolutionize AMP discovery. By leveraging AI, we can navigate the immense sequence space more efficiently, identifying peptides with optimal therapeutic properties. This Account explores the emerging application of AI in AMP discovery, focusing on two primary strategies: AMP mining, and AMP generation, as well as the use of discriminative methods as a valuable toolbox.AMP mining involves scanning biological sequences to identify potential AMPs. Discriminative models are then used to predict the activity and toxicity of these peptides. This approach has successfully identified numerous promising candidates, which were subsequently validated experimentally, demonstrating the potential of AI in AMP design and discovery.AMP generation, on the other hand, creates novel peptide sequences by learning from existing data through generative modeling. This class of models optimizes for desired properties, such as increased activity and reduced toxicity, potentially producing synthetic peptides that surpass naturally occurring ones. Despite the risk of generating unrealistic sequences, generative models hold the promise of accelerating the discovery of highly effective and highly novel and diverse AMPs.In this Account, we describe the technical challenges and advancements in these AI-based approaches. We discuss the importance of integrating various data sources and the role of advanced algorithms in refining peptide predictions. Additionally, we highlight the future potential of AI to not only expedite the discovery process but also to uncover peptides with unprecedented properties, paving the way for next-generation antimicrobial therapies.In conclusion, the synergy between AI and AMP discovery opens new frontiers in the fight against AMR. By harnessing the power of AI, we can design novel peptides that are both highly effective and safe, offering hope for a future where AMR is no longer a looming threat. Our paper underscores the transformative potential of AI in drug discovery, advocating for its continued integration into biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮绮山完成签到 ,获得积分10
刚刚
张文康完成签到,获得积分10
1秒前
miss完成签到,获得积分10
1秒前
清晨的小鹿完成签到,获得积分10
1秒前
1秒前
vivi发布了新的文献求助30
2秒前
2秒前
2秒前
wangll完成签到,获得积分10
2秒前
5114wwxx完成签到,获得积分10
3秒前
华仔应助如意雨雪采纳,获得20
3秒前
朝阳区李知恩应助lihe采纳,获得10
3秒前
CipherSage应助菲利克斯博采纳,获得30
3秒前
迷人荟完成签到,获得积分10
4秒前
5秒前
自信的傲旋完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助20
6秒前
imkhun1021发布了新的文献求助10
7秒前
7秒前
orixero应助OKC采纳,获得10
7秒前
vivi完成签到,获得积分10
7秒前
Roman发布了新的文献求助10
7秒前
7秒前
时舒完成签到 ,获得积分10
9秒前
9秒前
11111发布了新的文献求助10
10秒前
10秒前
希望天下0贩的0应助陈媛采纳,获得10
10秒前
ding应助鳗鱼三毒采纳,获得10
11秒前
11秒前
kk发布了新的文献求助10
11秒前
11秒前
imkhun1021完成签到,获得积分10
12秒前
tianugui发布了新的文献求助10
12秒前
zzz完成签到,获得积分10
13秒前
13秒前
14秒前
Wu发布了新的文献求助10
16秒前
doubleshake发布了新的文献求助10
16秒前
GPTea应助清风定何物采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4846688
求助须知:如何正确求助?哪些是违规求助? 4146626
关于积分的说明 12842159
捐赠科研通 3893487
什么是DOI,文献DOI怎么找? 2140206
邀请新用户注册赠送积分活动 1160081
关于科研通互助平台的介绍 1060417