AI-Driven Antimicrobial Peptide Discovery: Mining and Generation

抗菌剂 计算生物学 药物发现 化学 生物 生物化学 有机化学
作者
Paulina Szymczak,Wojciech Zarzecki,Jiejing Wang,Yiqian Duan,Jun Wang,Luís Pedro Coelho,César de la Fuente‐Núñez,Ewa Szczurek
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (12): 1831-1846 被引量:16
标识
DOI:10.1021/acs.accounts.0c00594
摘要

ConspectusThe escalating threat of antimicrobial resistance (AMR) poses a significant global health crisis, potentially surpassing cancer as a leading cause of death by 2050. Traditional antibiotic discovery methods have not kept pace with the rapidly evolving resistance mechanisms of pathogens, highlighting the urgent need for novel therapeutic strategies. In this context, antimicrobial peptides (AMPs) represent a promising class of therapeutics due to their selectivity toward bacteria and slower induction of resistance compared to classical, small molecule antibiotics. However, designing effective AMPs remains challenging because of the vast combinatorial sequence space and the need to balance efficacy with low toxicity. Addressing this issue is of paramount importance for chemists and researchers dedicated to developing next-generation antimicrobial agents.Artificial intelligence (AI) presents a powerful tool to revolutionize AMP discovery. By leveraging AI, we can navigate the immense sequence space more efficiently, identifying peptides with optimal therapeutic properties. This Account explores the emerging application of AI in AMP discovery, focusing on two primary strategies: AMP mining, and AMP generation, as well as the use of discriminative methods as a valuable toolbox.AMP mining involves scanning biological sequences to identify potential AMPs. Discriminative models are then used to predict the activity and toxicity of these peptides. This approach has successfully identified numerous promising candidates, which were subsequently validated experimentally, demonstrating the potential of AI in AMP design and discovery.AMP generation, on the other hand, creates novel peptide sequences by learning from existing data through generative modeling. This class of models optimizes for desired properties, such as increased activity and reduced toxicity, potentially producing synthetic peptides that surpass naturally occurring ones. Despite the risk of generating unrealistic sequences, generative models hold the promise of accelerating the discovery of highly effective and highly novel and diverse AMPs.In this Account, we describe the technical challenges and advancements in these AI-based approaches. We discuss the importance of integrating various data sources and the role of advanced algorithms in refining peptide predictions. Additionally, we highlight the future potential of AI to not only expedite the discovery process but also to uncover peptides with unprecedented properties, paving the way for next-generation antimicrobial therapies.In conclusion, the synergy between AI and AMP discovery opens new frontiers in the fight against AMR. By harnessing the power of AI, we can design novel peptides that are both highly effective and safe, offering hope for a future where AMR is no longer a looming threat. Our paper underscores the transformative potential of AI in drug discovery, advocating for its continued integration into biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助anwei采纳,获得10
1秒前
2秒前
2秒前
3秒前
脑洞疼应助孟晓晖采纳,获得10
3秒前
Amy发布了新的文献求助10
3秒前
五分之三完成签到,获得积分10
4秒前
4秒前
Ava应助搞怪人雄采纳,获得10
4秒前
5秒前
零四零零柒贰完成签到 ,获得积分10
5秒前
搜集达人应助CC采纳,获得10
5秒前
云兮发布了新的文献求助10
6秒前
ydy完成签到,获得积分10
6秒前
6秒前
Zhou发布了新的文献求助10
7秒前
8秒前
包容的狗完成签到 ,获得积分10
8秒前
9秒前
9秒前
Akim应助云中采纳,获得10
9秒前
天天发布了新的文献求助10
10秒前
清脆惜寒完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
今后应助北克采纳,获得10
11秒前
11秒前
12秒前
悠悠发布了新的文献求助10
12秒前
孟晓晖完成签到,获得积分10
13秒前
lijiawei完成签到,获得积分10
13秒前
13秒前
充电宝应助害羞的板凳采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
jmy1995发布了新的文献求助10
14秒前
雾见春完成签到 ,获得积分10
14秒前
wu完成签到,获得积分10
16秒前
16秒前
脑洞疼应助weijie采纳,获得10
17秒前
zzk发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713179
求助须知:如何正确求助?哪些是违规求助? 5214101
关于积分的说明 15269888
捐赠科研通 4864977
什么是DOI,文献DOI怎么找? 2611794
邀请新用户注册赠送积分活动 1562041
关于科研通互助平台的介绍 1519248