已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Detection of Black Hole Sign for Intracerebral Hemorrhage Patients Using Self-Supervised Learning

医学 符号(数学) 脑出血 人工智能 外科 蛛网膜下腔出血 计算机科学 数学 数学分析
作者
Hanyin Wang,Tim Schwirtlich,Ethan J. Houskamp,Meghan R. Hutch,Julianne Murphy,Jacinto C. Nascimento,Andrea Zini,Laura Brancaleoni,Sebastiano Giacomozzi,Yuan Luo,Andrew M. Naidech
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A8826-ajnr.A8826
标识
DOI:10.3174/ajnr.a8826
摘要

Intracerebral Hemorrhage (ICH) is a devastating form of stroke. Hematoma expansion (HE), growth of the hematoma on interval scans, predicts death and disability. Accurate prediction of HE is crucial for targeted interventions to improve patient outcomes. The black hole sign (BHS) on non-contrast computed tomography (CT) scans is a predictive marker for HE. An automated method to recognize the BHS and predict HE could speed precise patient selection for treatment. In. this paper, we presented a novel framework leveraging self-supervised learning (SSL) techniques for BHS identification on head CT images. A ResNet-50 encoder model was pre-trained on over 1.7 million unlabeled head CT images. Layers for binary classification were added on top of the pre-trained model. The resulting model was fine-tuned using the training data and evaluated on the held-out test set to collect AUC and F1 scores. The evaluations were performed on scan and slice levels. We ran different panels, one using two multi-center datasets for external validation and one including parts of them in the pre-training RESULTS: Our model demonstrated strong performance in identifying BHS when compared with the baseline model. Specifically, the model achieved scan-level AUC scores between 0.75-0.89 and F1 scores between 0.60-0.70. Furthermore, it exhibited robustness and generalizability across an external dataset, achieving a scan-level AUC score of up to 0.85 and an F1 score of up to 0.60, while it performed less well on another dataset with more heterogeneous samples. The negative effects could be mitigated after including parts of the external datasets in the fine-tuning process. This study introduced a novel framework integrating SSL into medical image classification, particularly on BHS identification from head CT scans. The resulting pre-trained head CT encoder model showed potential to minimize manual annotation, which would significantly reduce labor, time, and costs. After fine-tuning, the framework demonstrated promising performance for a specific downstream task, identifying the BHS to predict HE, upon comprehensive evaluation on diverse datasets. This approach holds promise for enhancing medical image analysis, particularly in scenarios with limited data availability. ICH = Intracerebral Hemorrhage; HE = Hematoma Expansion; BHS = Black Hole Sign; CT = Computed Tomography; SSL = Self-supervised Learning; AUC = Area Under the receiver operator Curve; CNN = Convolutional Neural Network; SimCLR = Simple framework for Contrastive Learning of visual Representation; HU = Hounsfield Unit; CLAIM = Checklist for Artificial Intelligence in Medical Imaging; VNA = Vendor Neutral Archive; DICOM = Digital Imaging and Communications in Medicine; NIfTI = Neuroimaging Informatics Technology Initiative; INR = International Normalized Ratio; GPU= Graphics Processing Unit; NIH= National Institutes of Health.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提发布了新的文献求助10
1秒前
2秒前
6秒前
小晚完成签到,获得积分10
6秒前
yyzhou完成签到 ,获得积分10
6秒前
该好好吃饭完成签到,获得积分10
7秒前
所所应助jason采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
yihao应助科研通管家采纳,获得10
12秒前
CAOHOU应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
Never stall完成签到 ,获得积分10
17秒前
19秒前
19秒前
23秒前
23秒前
wax发布了新的文献求助10
24秒前
脑洞疼应助Quinta采纳,获得10
28秒前
ch发布了新的文献求助10
29秒前
2534165发布了新的文献求助30
30秒前
suxili完成签到 ,获得积分10
30秒前
31秒前
34秒前
SciGPT应助邱水云采纳,获得10
37秒前
葱饼完成签到 ,获得积分10
38秒前
38秒前
39秒前
冰封火种完成签到,获得积分10
40秒前
Quinta完成签到,获得积分10
41秒前
41秒前
醉熏的老鼠完成签到,获得积分10
42秒前
领导范儿应助淡淡的秋烟采纳,获得10
42秒前
sunnn完成签到 ,获得积分10
44秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066974
求助须知:如何正确求助?哪些是违规求助? 3605981
关于积分的说明 11450573
捐赠科研通 3327541
什么是DOI,文献DOI怎么找? 1829399
邀请新用户注册赠送积分活动 899378
科研通“疑难数据库(出版商)”最低求助积分说明 819588