An improved YOLOv8 model enhanced with detail and global features for underwater object detection

水下 计算机科学 对象(语法) 人工智能 地质学 海洋学
作者
Zhengli Zhai,Niu-Wang-Jie Niu,Bao-Ming Feng,Shi-Ya Xu,Chunyu Qu,Chao Zong
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (9): 096008-096008 被引量:1
标识
DOI:10.1088/1402-4896/ad6e3b
摘要

Abstract Underwater object detection is significant for the practical research of mastering existing marine biological resources. In response to the challenges posed by complex underwater environments such as water scattering and variations in object scales, researchers have developed YOLOv8 for object detection, driven by the rising popularity and iteration of deep learning. Building upon this model, we propose an enhanced underwater object detection model named YOLOv8-DGF. Firstly, we replace the convolutional layers of Spatial Pyramid Pooling Fusion (SPPF) with Invertible Neural Networks to further augment the fusion capacity of detailed features, facilitating the preservation of pivotal information while mitigating the impact of noise. Additionally, we introduce a global attention mechanism into Convolution to Fully Connected (C2f), which weights the input features, thereby emphasizing or suppressing feature information from different locations. Through our ‘Detail to Global’ strategy, the model achieved mAP@0.5 scores of 87.7% and 84.8% on the RUOD and URPC2020 datasets, respectively, with improved processing speed. Extensive ablation experiments on the Pascal VOC dataset demonstrate that YOLOv8-DGF outperforms other methods, achieving the best overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助子唯采纳,获得10
2秒前
2秒前
情怀应助孤独的嫣采纳,获得10
3秒前
3秒前
gjq完成签到,获得积分10
3秒前
易安发布了新的文献求助30
4秒前
4秒前
852应助bofu采纳,获得30
4秒前
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
8秒前
yookia应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
张雷应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
潇洒飞丹发布了新的文献求助10
9秒前
adsff发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
情怀应助坦率的寻双采纳,获得10
10秒前
酷波er应助诸岩采纳,获得10
10秒前
兰天发布了新的文献求助10
11秒前
yyy发布了新的文献求助10
11秒前
深情安青应助bofu采纳,获得10
11秒前
wan12138完成签到 ,获得积分10
11秒前
陶醉幻丝完成签到,获得积分10
12秒前
无情向薇应助a8采纳,获得10
13秒前
GJL发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105