A Review of Tree‐Based Methods for Analyzing Survey Data

计算机科学 数据挖掘 树(集合论) 数据科学 计量经济学 统计 数学 数学分析
作者
Diya Bhaduri,Daniell Toth,Scott H. Holan
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:17 (1)
标识
DOI:10.1002/wics.70010
摘要

ABSTRACT Recent advances in data complexity and availability present both challenges and opportunities for automated data exploration. Tree‐based methods, known for their interpretability, are widely used for building regression and classification models. However, they often lag behind the best supervised learning approaches in terms of prediction accuracy. To address this limitation, ensemble methods, such as random forests, combine multiple trees to improve prediction accuracy, though at the cost of interpretability. While tree‐based methods have seen extensive use in various fields, their application in the context of complex survey data has been relatively limited. This article provides an overview of the state‐of‐the‐art tree‐based approaches for analyzing complex survey data. It distinguishes methods explicitly designed for survey contexts from those adapted from other domains. The discussion covers applications in model‐assisted approaches, disclosure limitation, and small area estimation, as well as other recent methodological developments tailored to survey data. Additionally, the article explores aggregated tree models that sacrifice interpretability for improved prediction accuracy. These models, such as Bagging, Random Forests, and Boosting, are explained, along with the concept of out‐of‐bag error for model evaluation. Finally, this article provides the history and development of tree models, from their origins in regression trees to more recent Bayesian approaches, and aggregated tree models. This overview sheds light on the potential utility of tree‐based methods in survey methodology and provides insights into future research directions in this evolving field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
qiqi发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
orixero应助galaxy采纳,获得10
3秒前
SciGPT应助TK采纳,获得10
6秒前
开心的半仙完成签到 ,获得积分10
6秒前
8秒前
JJ完成签到,获得积分10
9秒前
RONG发布了新的文献求助60
9秒前
深情安青应助龙梦采纳,获得10
11秒前
12秒前
gypsy发布了新的文献求助10
12秒前
13秒前
迷恋发布了新的文献求助50
13秒前
scy11完成签到,获得积分10
14秒前
zz完成签到,获得积分20
15秒前
夜雨完成签到,获得积分10
16秒前
花火完成签到,获得积分10
17秒前
juncguo发布了新的文献求助10
17秒前
17秒前
18秒前
TK发布了新的文献求助10
19秒前
史迪奇完成签到,获得积分10
20秒前
船长完成签到,获得积分10
20秒前
李爱国应助乐观的依白采纳,获得10
20秒前
稚祎完成签到 ,获得积分10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451