已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human‐AI collaboration: Designing artificial agents to facilitate socially shared regulation among learners

计算机科学 知识管理 人机交互 万维网
作者
Justin Edwards,Andy Nguyen,Joni Lämsä,Márta Sobocinski,Ridwan Whitehead,Belle Dang,A. Roberts,Sanna Järvelä
出处
期刊:British Journal of Educational Technology [Wiley]
被引量:1
标识
DOI:10.1111/bjet.13534
摘要

Abstract Socially shared regulation of learning (SSRL) is a crucial process for groups of learners to successfully collaborate. Detecting and supporting SSRL is a challenge, especially in real time, but hybrid intelligence approaches such as Artificial Intelligence (AI) agents may make this possible. Leveraging the concept of trigger events which invite SSRL, we present a design of an AI agent, MAI, which can detect SSRL and prompt students to raise their group‐level metacognitive awareness with the aim of facilitating SSRL. We present the methodology we used to design MAI, drawing on the Echeloned DSR (eDSR) Methodological Framework and making use of the Wizard of Oz prototyping paradigm. We likewise present empirical results evaluating our initial prototype of MAI, using lexical alignment between speakers as a quantitative measure of the effect of MAI's prompts on facilitating SSRL, the Partner Model Questionnaire as a quantitative measure of perceptions of MAI, and interviews as qualitative context for these perceptions. We found that the first prototype of MAI did not facilitate SSRL as hoped, possibly owing to mixed perceptions of MAI's reliability and lack of clarity about MAI's role in the collaborative learning task. From these findings, we offer revised prompts for the next iteration of prototyping this agent and a refined set of design requirements for future development of metacognitive AI agents for supporting SSRL. Practitioner notes What is already known about this topic Socially Shared Regulation of Learning (SSRL) is recognized as a critical component for the success of collaborative learning, emphasizing the importance of group‐level regulatory processes in achieving shared goals, enacting strategies and monitoring learning progress. Supporting SSRL in face‐to‐face collaborative learning environments presents challenges, including the complexity of coordinating and synchronizing individual contributions and regulatory actions within a group context. What this paper adds This paper introduces the design of Metacognitive Artificial Intelligence (MAI), a novel AI system aimed at enhancing Human‐AI collaboration for supporting and augmenting SSRL processes. Through empirical research, the study offers lessons learned and design considerations for developing artificial agents on facilitating and enhancing SSRL among learners, demonstrating how AI can play a pivotal role in collaborative learning environments. The findings highlight the critical importance of multidisciplinary knowledge in the design of multi‐agent interfaces (MAI) that provide real‐time, adaptive support for group metacognitive processes and decision‐making. Implications for practice and/or policy Educational technologists can utilize the proposed design principles in the development and integration of MAI tools to enhance SSRL. Educators can incorporate the principles of MAI and our relevant findings into their teaching strategies to actively foster and support socially shared regulation of learning among students. Policymakers should consider revising educational frameworks to include the use of AI technologies that support SSRL strategies in collaborative learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宗友绿发布了新的文献求助10
1秒前
千倾完成签到 ,获得积分10
2秒前
小小飞xxf完成签到 ,获得积分10
3秒前
3秒前
隐形路灯完成签到 ,获得积分10
5秒前
wwdd发布了新的文献求助10
6秒前
8秒前
cjh发布了新的文献求助10
11秒前
悲凉的小甜瓜给悲凉的小甜瓜的求助进行了留言
12秒前
盛夏如花发布了新的文献求助10
12秒前
13秒前
土豆完成签到,获得积分10
13秒前
silsotiscolor完成签到,获得积分10
14秒前
15秒前
单薄双双发布了新的文献求助10
17秒前
wiwia发布了新的文献求助10
20秒前
鲁丁丁发布了新的文献求助10
21秒前
贾舒涵完成签到,获得积分10
22秒前
痴情的靖柔完成签到 ,获得积分10
24秒前
单薄双双完成签到,获得积分20
24秒前
Artin完成签到,获得积分10
25秒前
找文献完成签到 ,获得积分10
25秒前
潇湘完成签到 ,获得积分10
27秒前
31秒前
31秒前
科研通AI5应助盛夏如花采纳,获得10
33秒前
米团发布了新的文献求助10
34秒前
kyri发布了新的文献求助30
38秒前
44秒前
45秒前
46秒前
muderder发布了新的文献求助10
51秒前
盛夏如花发布了新的文献求助10
52秒前
汉堡包应助weiwenzuo采纳,获得10
53秒前
55秒前
wiwia完成签到,获得积分10
55秒前
3113129605完成签到 ,获得积分10
56秒前
小阿博完成签到,获得积分10
56秒前
ding应助muderder采纳,获得10
57秒前
共享精神应助小章鱼采纳,获得10
58秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819819
求助须知:如何正确求助?哪些是违规求助? 3362720
关于积分的说明 10418416
捐赠科研通 3080964
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768482