Elucidating the role of artificial intelligence in drug development from the perspective of drug-target interactions

化学 药品 透视图(图形) 药物开发 药物靶点 计算生物学 药理学 人工智能 生物化学 计算机科学 医学 生物
作者
Boyang Wang,Tingyu Zhang,Qingyuan Liu,Chayanis Sutcharitchan,Ziyi Zhou,Dingfan Zhang,Li Shao
出处
期刊:Journal of Pharmaceutical Analysis [Elsevier]
卷期号:15 (3): 101144-101144 被引量:22
标识
DOI:10.1016/j.jpha.2024.101144
摘要

Drug development remains a critical issue in the field of biomedicine. With the rapid advancement of information technologies such as artificial intelligence (AI) and the advent of the big data era, AI-assisted drug development has become a new trend, particularly in predicting drug-target associations. To address the challenge of drug-target prediction, AI-driven models have emerged as powerful tools, offering innovative solutions by effectively extracting features from complex biological data, accurately modeling molecular interactions, and precisely predicting potential drug-target outcomes. Traditional machine learning (ML), network-based, and advanced deep learning architectures such as convolutional neural networks (CNNs), graph convolutional networks (GCNs), and transformers play a pivotal role. This review systematically compiles and evaluates AI algorithms for drug- and drug combination-target predictions, highlighting their theoretical frameworks, strengths, and limitations. CNNs effectively identify spatial patterns and molecular features critical for drug-target interactions. GCNs provide deep insights into molecular interactions via relational data, whereas transformers increase prediction accuracy by capturing complex dependencies within biological sequences. Network-based models offer a systematic perspective by integrating diverse data sources, and traditional ML efficiently handles large datasets to improve overall predictive accuracy. Collectively, these AI-driven methods are transforming drug-target predictions and advancing the development of personalized therapy. This review summarizes the application of AI in drug development, particularly in drug-target prediction, and offers recommendations on models and algorithms for researchers engaged in biomedical research. It also provides typical cases to better illustrate how AI can further accelerate development in the fields of biomedicine and drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小镇微光完成签到,获得积分10
1秒前
哥哥发布了新的文献求助10
5秒前
6秒前
zzy完成签到 ,获得积分10
9秒前
10秒前
丘比特应助愉快的灭男采纳,获得10
10秒前
11秒前
12秒前
共享精神应助想有所成采纳,获得10
12秒前
沉心静气搞学习应助ZaZa采纳,获得50
12秒前
14秒前
y13333完成签到,获得积分10
15秒前
糖炒栗子完成签到 ,获得积分10
15秒前
111发布了新的文献求助20
16秒前
李志全完成签到 ,获得积分10
16秒前
BW发布了新的文献求助40
16秒前
闪闪落雁发布了新的文献求助10
16秒前
Czerkingsky完成签到,获得积分10
17秒前
17秒前
熄熄完成签到 ,获得积分10
18秒前
xunanlei发布了新的文献求助10
19秒前
20秒前
20秒前
LeonPan关注了科研通微信公众号
20秒前
zzZ发布了新的文献求助10
20秒前
perfumei完成签到,获得积分10
22秒前
梁暖完成签到,获得积分10
22秒前
分析完成签到 ,获得积分10
22秒前
bill完成签到,获得积分10
22秒前
23秒前
56789完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
23秒前
小明应助yuanying采纳,获得10
24秒前
LB应助yuanying采纳,获得30
24秒前
24秒前
六折完成签到,获得积分10
25秒前
浮游应助小静采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299983
求助须知:如何正确求助?哪些是违规求助? 4448023
关于积分的说明 13844467
捐赠科研通 4333625
什么是DOI,文献DOI怎么找? 2378986
邀请新用户注册赠送积分活动 1374155
关于科研通互助平台的介绍 1339786