Detection-Driven Exposure-Correction Network for Nighttime Drone-View Object Detection

计算机科学 人工智能 目标检测 无人机 计算机视觉 遥感 对象(语法) 模式识别(心理学) 地质学 遗传学 生物
作者
Yue Xi,Wenjing Jia,Qiguang Miao,Junmei Feng,Jinchang Ren,Heng Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2024.3351134
摘要

Drone-view object detection (DroneDet) models typically suffer a significant performance drop when applied to nighttime scenes. Existing solutions attempt to employ an exposure-adjustment module to reveal objects hidden in dark regions before detection. However, most exposure-adjustment models are only optimized for human perception, where the exposure-adjusted images may not necessarily enhance recognition. To tackle this issue, we propose a novel Detection-driven Exposure-correction network for nighttime DroneDet, called DEDet. The DEDet conducts adaptive, nonlinear adjustment of pixel values in a spatially fine-grained manner to generate DroneDet-friendly images. Specifically, we develop a fine-grained parameter predictor (FPP) to estimate pixelwise parameter maps of the image filters. These filters, along with the estimated parameters, are used to adjust pixel values of the low-light image based on nonuniform illuminations in drone-captured images. In order to learn the nonlinear transformation from the original nighttime images to their DroneDet-friendly counterparts, we propose a progressive filtering module that applies recursive filters to iteratively refine the exposed image. Furthermore, to evaluate the performance of the proposed DEDet, we have built a dataset NightDrone to address the scarcity of the datasets specifically tailored for this purpose. Extensive experiments conducted on four nighttime datasets show that DEDet achieves a superior accuracy compared with the state-of-the-art (SOTA) methods. Furthermore, ablation studies and visualizations demonstrate the validity and interpretability of our approach. Our NightDrone dataset can be downloaded from https://github.com/yuexiemail/NightDrone-Dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助面包小狗采纳,获得10
1秒前
tian发布了新的文献求助10
2秒前
尘埃之影完成签到,获得积分10
2秒前
科研通AI5应助khdzzh采纳,获得30
3秒前
Vicky完成签到 ,获得积分10
3秒前
HL完成签到 ,获得积分10
7秒前
10秒前
11秒前
Lucas应助虚掩的门采纳,获得10
13秒前
Xiaoxiao应助燕聪聪采纳,获得30
13秒前
14秒前
15秒前
热沙来提发布了新的文献求助10
15秒前
16秒前
17秒前
苇一发布了新的文献求助10
17秒前
18秒前
xz发布了新的文献求助10
19秒前
22秒前
jiong_stone完成签到,获得积分10
23秒前
asdfqwer发布了新的文献求助10
23秒前
洋洋爱吃枣完成签到 ,获得积分10
25秒前
26秒前
27秒前
Lucifer完成签到,获得积分10
30秒前
khdzzh发布了新的文献求助30
31秒前
xiaoniu233发布了新的文献求助10
31秒前
Japrin完成签到,获得积分10
31秒前
32秒前
Echo发布了新的文献求助10
34秒前
34秒前
34秒前
和谐续完成签到 ,获得积分10
35秒前
领导范儿应助阳光的晓槐采纳,获得10
35秒前
37秒前
小徐801完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734