A reversible natural language watermarking for sensitive information protection

数字水印 计算机科学 自然(考古学) 自然语言 信息保护政策 计算机安全 自然语言处理 人工智能 地质学 古生物学 图像(数学)
作者
Lingyun Xiang,Yangfan Liu,Zhongliang Yang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (3): 103661-103661
标识
DOI:10.1016/j.ipm.2024.103661
摘要

Existing methods have evolved from using synonym substitution to incorporating arbitrary word substitution to achieve reversible natural language watermarking. However, a notable limitation is that they are prone to overlook the sensitivity of information associated with the original words, with a tendency to prefer non-sensitive words for substitution. As a result, a potential risk of sensitive information leakage contained in the original text is posed. Furthermore, while aiming for reversibility, the overall performance of the watermarking method may be inadvertently compromised. In response to the above problems, this paper puts forward a novel reversible natural language watermarking method that combines a Keyword Substitution scheme and a Prediction Error Expansion algorithm (KSPEE) to protect sensitive information, verify content integrity, protect copyright, and so on. Specifically, KSPEE leverages a keyword extraction algorithm to identify important content containing sensitive information in the original text, thereby determining the potential positions for watermark information embedding. Subsequently, a masked language model is utilized to predict appropriate substitution words based on the surrounding semantic information of the embedding position. In addition, the prediction error expansion algorithm is employed to select appropriate words for substituting the original keywords, ensuring the successful embedding of watermark information while maintaining the recoverability of the original keywords. By identifying keywords and substituting them, a suitable method of protecting the original sensitive information is provided. Extensive experiments demonstrate that, under the promise of semantic distortion and lossless restoration of the original content, the proposed method KSPEE achieves outstanding watermarked text quality. A higher watermark embedding rate is achieved and strong security is shown by KSPEE. More importantly, KSPEE effectively prevents the leakage of sensitive information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椒盐丸子完成签到,获得积分10
刚刚
Yacon发布了新的文献求助10
刚刚
赵维雪完成签到,获得积分10
刚刚
科研通AI5应助王jh采纳,获得10
刚刚
petrichor完成签到 ,获得积分10
刚刚
1秒前
Andy_111完成签到,获得积分10
1秒前
帮我下一下完成签到,获得积分10
1秒前
玉玉发布了新的文献求助10
1秒前
1秒前
读书的时候完成签到,获得积分10
2秒前
Lily完成签到,获得积分10
3秒前
queen814完成签到,获得积分10
3秒前
科研通AI5应助景绝义采纳,获得10
3秒前
小屋完成签到,获得积分10
3秒前
3秒前
3秒前
碧蓝梦容完成签到,获得积分10
4秒前
科研通AI5应助Chase采纳,获得10
4秒前
4秒前
在水一方应助Yacon采纳,获得30
5秒前
TT发布了新的文献求助10
5秒前
5秒前
一点完成签到 ,获得积分10
5秒前
6秒前
6秒前
英姑应助提笔写未来C采纳,获得10
7秒前
房班发布了新的文献求助10
7秒前
妮妮发布了新的文献求助10
8秒前
小马甲应助落寞的代萱采纳,获得10
8秒前
乐乐应助研究生吗喽采纳,获得10
8秒前
勇者先享受生活完成签到 ,获得积分10
9秒前
9秒前
zz完成签到,获得积分10
9秒前
Kyt2024发布了新的文献求助30
9秒前
10秒前
彩虹猫之刃完成签到,获得积分10
10秒前
10秒前
刘佳敏完成签到 ,获得积分10
10秒前
怕孤独的忆南完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349330
关于积分的说明 10343291
捐赠科研通 3065325
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764650