A novel training mechanism for health indicator construction and remaining useful lifetime (RUL) prediction

计算机科学 代表(政治) 结构化 膨胀的 机器学习 人工智能 功能(生物学) 领域(数学) 机制(生物学) 空格(标点符号) 数据挖掘 数学 操作系统 生物 复合材料 经济 法学 纯数学 政治学 政治 进化生物学 认识论 财务 材料科学 抗压强度 哲学
作者
Hanbyeol Park,Dohee Kim,Minseop Kim,Mingyu Park,Hyerim Bae,Yunkyung Park
标识
DOI:10.1109/bigdata59044.2023.10386786
摘要

In the field of predicting the remaining useful lifetime (RUL) of equipment based on health indicators (HIs), the effective extraction of equipment status poses a persistent challenge. Numerous studies have focused on the extraction of HI of an equipment, frequently proposing training methods that utilize one-dimensional latent space autoencoders for computing the loss function with HI. This was imperative due to the compositional nature of HIs are real numbers. However, in cases where equipment status exhibits nonlinear and intricate structuring, the latent vector necessitates representation within a sufficiently expansive space. This paper introduces a methodology for mapping real numbers to higher dimensions to achieve a more efficient representation of HI. Upon applying our proposed methodology to various HI extraction models, we observed that in most instances, the performance of HI extraction was enhanced. Ultimately, this contributed to an improvement in the prediction accuracy to RUL. The efficacy of our learning mechanism was validated across four subsets (FD001 to FD004) of the C-MAPSS dataset provided by NASA. Notably, the methodology presented in this study holds significance as a learning mechanism adaptable to various approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hero发布了新的文献求助10
1秒前
夨艺完成签到,获得积分10
1秒前
小学生完成签到,获得积分20
1秒前
Math4396发布了新的文献求助10
2秒前
大个应助歪歪打豆豆采纳,获得10
2秒前
王铭元完成签到 ,获得积分10
2秒前
温暖寻雪发布了新的文献求助10
3秒前
mxdckd发布了新的文献求助10
3秒前
4秒前
CipherSage应助糟糕的道罡采纳,获得10
4秒前
FashionBoy应助糟糕的道罡采纳,获得10
4秒前
壮观道罡发布了新的文献求助10
5秒前
5秒前
知来者之可追完成签到,获得积分10
8秒前
9秒前
9秒前
Aaron完成签到,获得积分10
11秒前
今后应助壮观道罡采纳,获得10
11秒前
彭于晏应助DY采纳,获得10
12秒前
DAVE应助gao采纳,获得20
13秒前
13秒前
13秒前
kk星发布了新的文献求助10
14秒前
SYLH应助ixueyi采纳,获得10
14秒前
15秒前
科目三应助wlxam采纳,获得10
16秒前
16秒前
17秒前
18秒前
19秒前
19秒前
21秒前
21秒前
科研通AI5应助qbcheng采纳,获得10
21秒前
22秒前
22秒前
星辰大海应助Young4399采纳,获得10
23秒前
我要发sci发布了新的文献求助10
23秒前
资浩阑完成签到,获得积分10
23秒前
大勺子发布了新的文献求助10
23秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144