Analysis of DWT–DCT watermarking algorithm on digital medical imaging

离散余弦变换 数字水印 离散小波变换 人工智能 块(置换群论) 感兴趣区域 峰值信噪比 计算机视觉 特征(语言学) 算法 相似性(几何) 噪音(视频) 模式识别(心理学) 计算机科学 图像(数学) 小波 医学 数学 小波变换 语言学 哲学 几何学
作者
Rajkumar Soundrapandiyan,Kannadasan Rajendiran,Arunkumar Gurunathan,Akila Victor,Ramani Selvanambi
出处
期刊:Journal of medical imaging [SPIE]
卷期号:11 (01) 被引量:3
标识
DOI:10.1117/1.jmi.11.1.014002
摘要

PurposeOver the past decade, the diagnostic information of the patients are digitally recorded and transferred. During the transmission of patients data, the security and authenticity of the information has to be ensured. Medical image watermarking technology has recently advanced because it can be used to conceal patient information while ensuring the authenticity. We propose a multiple watermarking method for securing clinical medical images.ApproachIn this watermarking method, the quality feature property and private label property information are embedded as watermarks in the original image. Initially, medical images are divided into the region of interest (ROI) and non-interest region (NIR). Second, a two-level discrete wavelet transform (DWT) is applied to the ROI and the coefficients LL1 (LL2, LH2, HL2, HH2), LH1, HL1, and HH1 are generated. Watermarks are embedded using the DWT low-frequency sub-band (LL2) by quantizing the low-frequency coefficients. Next, the NIR is separated into non-overlapping 8×8 blocks, and a discrete cosine transform (DCT) is applied for each block. The DCT coefficients of each block are sorted using the zigzag transform. For embedding, eight intermediate frequency coefficients are used. Finally, the feature information is embedded in the ROI, and the tag information is embedded in the NIR.ResultsThe performance of the DWT-DCT watermarking method is calculated using the metrics of peak signal-to-noise ratio (PSNR), structural similarity index measure, and mean square error. The proposed method obtained the better PSNR value of 45.76 dB.ConclusionsThe proposed model works well for clinical medical images when compared with the existing techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助cmy采纳,获得10
1秒前
eason应助小宝爸爸采纳,获得10
1秒前
1秒前
1秒前
ayun发布了新的文献求助50
2秒前
4秒前
llllllll发布了新的文献求助10
4秒前
4秒前
嘻哈哈发布了新的文献求助10
5秒前
善学以致用应助十三采纳,获得10
5秒前
5秒前
Narcissa发布了新的文献求助10
5秒前
科研通AI5应助青鸟采纳,获得10
5秒前
Lucas应助大力便当采纳,获得30
6秒前
所所应助Sissi采纳,获得30
6秒前
细心书蕾完成签到 ,获得积分10
7秒前
崔哈哈完成签到,获得积分20
8秒前
张zhang完成签到,获得积分10
8秒前
C.Z.Young应助荆轲刺秦王采纳,获得10
9秒前
靖瑞丰完成签到,获得积分10
10秒前
火星上仰完成签到,获得积分10
10秒前
风趣雅柏发布了新的文献求助10
10秒前
wan发布了新的文献求助20
11秒前
大模型应助ww采纳,获得10
11秒前
12秒前
无敌龙傲天完成签到,获得积分10
13秒前
13秒前
13秒前
llllllll完成签到,获得积分10
14秒前
14秒前
catherine完成签到,获得积分10
15秒前
Lml完成签到,获得积分10
15秒前
星辰大海应助禾禾采纳,获得10
15秒前
牛子妹关注了科研通微信公众号
16秒前
万能图书馆应助jiajia采纳,获得10
16秒前
情怀应助勤恳慕蕊采纳,获得30
16秒前
MM完成签到,获得积分10
17秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813789
求助须知:如何正确求助?哪些是违规求助? 3358206
关于积分的说明 10392542
捐赠科研通 3075504
什么是DOI,文献DOI怎么找? 1689364
邀请新用户注册赠送积分活动 812733
科研通“疑难数据库(出版商)”最低求助积分说明 767350