Constrained large-scale real-time EV scheduling based on recurrent deep reinforcement learning

强化学习 马尔可夫决策过程 随机性 可扩展性 计算机科学 调度(生产过程) 数学优化 比例(比率) 马尔可夫过程 人工智能 数学 量子力学 数据库 统计 物理
作者
Hang Li,Guojie Li,Tek Tjing Lie,Xingzhi Li,Keyou Wang,Bei Han,Jin Xu
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:144: 108603-108603 被引量:24
标识
DOI:10.1016/j.ijepes.2022.108603
摘要

The rapid growth of electric vehicles (EVs) is an unstoppable worldwide development trend. An optimal charging strategy for large-scale EVs is able to deal with the randomness of EVs charging and satisfy charging demands of users while ensuring safe and economic operation of the power system. The current centralized and model-based methods failed to overcome the randomness charging problem of the large-scale EVs. Thus, the paper proposes a decentralized approach based on model-free deep reinforcement learning (DRL) to determine the optimal strategy for reducing EVs charging cost considering power limit of the charging station (CS), users' charging demands and fair charging fees. First, a decentralized framework and a dynamic energy boundary (DEB) model of single EV which discretizes the charging demand are proposed. Second, the problem as a Markov Decision Process (MDP) with unknown transition probability is formulated. Moreover, the recurrent deep deterministic policy gradient (RDDPG) based approach is proposed to determine the charging strategy for all charging piles in the CS. Finally, digital simulation studies are conducted to demonstrate the effectiveness of the proposed approach in charging cost reduction and fair charging fees. In addition, the RDDPG-based approach has great scalability which can apply a small-scale model to solve a large-scale problem without being retrained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丑丑阿完成签到,获得积分10
1秒前
1秒前
和谐尔阳发布了新的文献求助10
3秒前
木mu完成签到,获得积分10
4秒前
liyuze完成签到,获得积分10
4秒前
18726352502完成签到,获得积分20
4秒前
Owen应助mzrrong采纳,获得10
5秒前
5秒前
6秒前
8秒前
8秒前
科目三应助Afffrain采纳,获得10
10秒前
11秒前
Jin完成签到,获得积分10
11秒前
123关闭了123文献求助
12秒前
赘婿应助A辉采纳,获得10
12秒前
Akim应助别梦寒采纳,获得10
13秒前
田様应助武雨寒采纳,获得10
13秒前
回星予你发布了新的文献求助30
14秒前
橙子伴猪崽完成签到,获得积分10
14秒前
冷酷问柳完成签到,获得积分10
15秒前
CCY发布了新的文献求助20
15秒前
万能图书馆应助Maria采纳,获得10
15秒前
15秒前
禾沐发布了新的文献求助10
15秒前
16秒前
wxjsj完成签到,获得积分10
17秒前
17秒前
Maestro_S应助科研通管家采纳,获得10
17秒前
mingjie发布了新的文献求助10
17秒前
爆米花应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
张佳麟应助科研通管家采纳,获得20
18秒前
fan应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
Maestro_S应助科研通管家采纳,获得10
18秒前
张佳麟应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
McCance and Widdowson's Composition of Foods, 7th edition 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4468392
求助须知:如何正确求助?哪些是违规求助? 3929390
关于积分的说明 12192842
捐赠科研通 3582921
什么是DOI,文献DOI怎么找? 1969104
邀请新用户注册赠送积分活动 1007381
科研通“疑难数据库(出版商)”最低求助积分说明 901385