亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation

计算机科学 人工智能 分割 卷积神经网络 图像分割 变压器 编码器 计算机视觉 医学影像学 GSM演进的增强数据速率 模式识别(心理学) 工程类 操作系统 电气工程 电压
作者
Jingyi Yang,Licheng Jiao,Ronghua Shang,Xu Liu,Ruiyang Li,Longchang Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3229-3243 被引量:16
标识
DOI:10.1109/tmi.2023.3278461
摘要

The convolutional neural network has achieved remarkable results in most medical image seg- mentation applications. However, the intrinsic locality of convolution operation has limitations in modeling the long-range dependency. Although the Transformer designed for sequence-to-sequence global prediction was born to solve this problem, it may lead to limited positioning capability due to insufficient low-level detail features. Moreover, low-level features have rich fine-grained information, which greatly impacts edge segmentation decisions of different organs. However, a simple CNN module is difficult to capture the edge information in fine-grained features, and the computational power and memory consumed in processing high-resolution 3D features are costly. This paper proposes an encoder-decoder network that effectively combines edge perception and Transformer structure to segment medical images accurately, called EPT-Net. Under this framework, this paper proposes a Dual Position Transformer to enhance the 3D spatial positioning ability effectively. In addition, as low-level features contain detailed information, we conduct an Edge Weight Guidance module to extract edge information by minimizing the edge information function without adding network parameters. Furthermore, we verified the effectiveness of the proposed method on three datasets, including SegTHOR 2019, Multi-Atlas Labeling Beyond the Cranial Vault and the re-labeled KiTS19 dataset called KiTS19-M by us. The experimental results show that EPT-Net has significantly improved compared with the state-of-the-art medical image segmentation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助liujingyi采纳,获得10
刚刚
Akim应助Corn_Dog采纳,获得10
2秒前
liujingyi完成签到,获得积分20
7秒前
12秒前
天天快乐应助xj采纳,获得10
15秒前
钱念波完成签到,获得积分10
16秒前
Corn_Dog发布了新的文献求助10
16秒前
26秒前
balko发布了新的文献求助10
30秒前
31秒前
xj发布了新的文献求助10
35秒前
49秒前
51秒前
53秒前
1分钟前
苹果觅夏完成签到 ,获得积分10
1分钟前
Leung应助科研通管家采纳,获得10
1分钟前
Erin完成签到 ,获得积分0
1分钟前
2分钟前
一段段发布了新的文献求助10
2分钟前
星辰大海应助嘚嘚采纳,获得10
2分钟前
英俊的铭应助一段段采纳,获得10
2分钟前
2分钟前
wanci应助Sakura采纳,获得30
2分钟前
汉堡包应助xj采纳,获得10
3分钟前
pp‘s完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
天天完成签到,获得积分10
3分钟前
3分钟前
_hyl完成签到 ,获得积分10
3分钟前
xj发布了新的文献求助10
3分钟前
Sakura发布了新的文献求助30
3分钟前
天天发布了新的文献求助10
3分钟前
3分钟前
追梦远行人完成签到 ,获得积分10
3分钟前
清爽的机器猫完成签到 ,获得积分10
4分钟前
在鹿特丹完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782649
求助须知:如何正确求助?哪些是违规求助? 3328049
关于积分的说明 10234287
捐赠科研通 3043022
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971