力场(虚构)
多极展开
航程(航空)
人工神经网络
可微函数
可转让性
计算机科学
微扰理论(量子力学)
静电学
统计物理学
化学
物理
生物系统
人工智能
机器学习
数学
材料科学
数学分析
量子力学
罗伊特
复合材料
生物
作者
Zheng Cheng,Hangrui Bi,Siyuan Liu,Junmin Chen,Alston J. Misquitta,Kuang Yu
标识
DOI:10.1021/acs.jctc.4c00337
摘要
Accurately describing long-range interactions is a significant challenge in molecular dynamics (MD) simulations of proteins. High-quality long-range potential is also an important component of the range-separated machine learning force field. This study introduces a comprehensive asymptotic parameter database encompassing atomic multipole moments, polarizabilities, and dispersion coefficients. Leveraging active learning, our database comprehensively represents protein fragments with up to 8 heavy atoms, capturing their conformational diversity with merely 78,000 data points. Additionally, the E(3) neural network (E3NN) is employed to predict the asymptotic parameters directly from the local geometry. The E3NN models demonstrate exceptional accuracy and transferability across all asymptotic parameters, achieving an R2 of 0.999 for both protein fragments and 20 amino acid dipeptide test sets. The long-range electrostatic and dispersion energies can be obtained using the E3NN-predicted parameters, with an error of 0.07 and 0.02 kcal/mol, respectively, when compared to symmetry-adapted perturbation theory (SAPT). Therefore, our force fields demonstrate the capability to accurately describe long-range interactions in proteins, paving the way for next-generation protein force fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI