控制理论(社会学)
稳健性(进化)
计算机科学
非线性系统
模糊控制系统
人工神经网络
控制工程
模糊逻辑
控制系统
机器人
滑模控制
人工智能
控制(管理)
工程类
物理
量子力学
生物化学
化学
电气工程
基因
作者
Li-Jiang Li,Xiang Chang,Fei Chao,Chih‐Min Lin,Tuân-Tú Huỳnh,Longzhi Yang,Changjing Shang,Qiang Shen
标识
DOI:10.1109/tnnls.2024.3397045
摘要
Nonlinear systems, such as robotic systems, play an increasingly important role in our modern daily life and have become more dominant in many industries; however, robotic control still faces various challenges due to diverse and unstructured work environments. This article proposes a double-loop recurrent neural network (DLRNN) with the support of a Type-2 fuzzy system and a self-organizing mechanism for improved performance in nonlinear dynamic robot control. The proposed network has a double-loop recurrent structure, which enables better dynamic mapping. In addition, the network combines a Type-2 fuzzy system with a double-loop recurrent structure to improve the ability to deal with uncertain environments. To achieve an efficient system response, a self-organizing mechanism is proposed to adaptively adjust the number of layers in a DLRNN. This work integrates the proposed network into a conventional sliding mode control (SMC) system to theoretically and empirically prove its stability. The proposed system is applied to a three-joint robot manipulator, leading to a comparative study that considers several existing control approaches. The experimental results confirm the superiority of the proposed system and its effectiveness and robustness in response to various external system disturbances.
科研通智能强力驱动
Strongly Powered by AbleSci AI