Wire-based directed energy deposition of a novel high-performance titanium fiber-reinforced Al5183 Aluminum Alloy

材料科学 合金 钛合金 极限抗拉强度 卤化 冶金 纤维 焊接性 复合材料 体积分数
作者
Yongliang Geng,Meng Zhao,Xinzhi Li,Ke Huang,Xuan Peng,Binbin Zhang,Xuewei Fang,Yugang Duan,Bingheng Lu
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:65: 103445-103445 被引量:16
标识
DOI:10.1016/j.addma.2023.103445
摘要

5xxx aluminum alloys find wide application in different industry fields due to their several advantages such as good weldability and corrosion resistance. However, their strength is inferior to their 2xxx and 7xxx counterparts, limiting their application to high load-bearing conditions. In order to improve the mechanical properties of additively manufactured Al5183 aluminum alloy, titanium fiber-reinforced Aluminum (TFRA) components were fabricated for the first time by wire-based directed energy deposition-arc manufacturing (DED-arc) using a dual-wire feeding system. The reinforcing titanium fiber was kept in solid state by carefully controlling its feed path and arc heat input. The thickness of the interface between the titanium alloy wire and the aluminum alloy matrix was about 3–10 µm, with a gradient transition in chemical composition and no obvious cracking tendencies. The results reveal that, as compared to the non-fiber-reinforced aluminum components, the yield and tensile strength of the TFRA components increased by 124 % and 33 % respectively, by adding 10.5 % volume fraction of titanium fibers. Meanwhile, its impact energy increased by 128 %, from the original value of 7.9–18.0 J. The increased strength was analytically analyzed by the mixed law theory and has been verified by finite element simulation. The increased impact property of the TFRA components is due to the fact that crack propagation in the aluminum matrix is blocked by the titanium fiber. Therefore, this work provides a promising way to fabricate high strength aluminum alloy with continuous fiber through DED-arc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助木木三采纳,获得10
1秒前
orixero应助木木三采纳,获得10
1秒前
星辰大海应助木木三采纳,获得10
1秒前
深情安青应助木木三采纳,获得10
1秒前
万柳书院小书童完成签到 ,获得积分10
2秒前
肥陈发布了新的文献求助10
3秒前
林水程发布了新的文献求助10
4秒前
liu完成签到 ,获得积分20
4秒前
闪闪小小完成签到 ,获得积分10
5秒前
喵喵完成签到,获得积分10
6秒前
科研通AI2S应助CYY采纳,获得10
6秒前
8秒前
大意的皓轩完成签到 ,获得积分10
8秒前
11秒前
玖月发布了新的文献求助10
13秒前
achenghn完成签到,获得积分10
13秒前
ayer发布了新的文献求助10
14秒前
顺利兰完成签到 ,获得积分10
15秒前
木木完成签到 ,获得积分10
16秒前
achenghn发布了新的文献求助10
16秒前
赘婿应助明天会更美好采纳,获得10
16秒前
果果完成签到,获得积分10
17秒前
无奈醉柳完成签到,获得积分10
17秒前
18秒前
gb2312完成签到 ,获得积分10
18秒前
香蕉觅云应助蔡继海采纳,获得10
19秒前
夏宇完成签到 ,获得积分10
21秒前
22秒前
22秒前
小姜爱橙子完成签到 ,获得积分10
22秒前
冰魂应助Freya采纳,获得10
23秒前
郭宇发布了新的文献求助10
23秒前
Belinda发布了新的文献求助10
26秒前
28秒前
28秒前
29秒前
哈哈哈发布了新的文献求助10
31秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
大模型应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976