清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Explainable Machine Learning Model to Predict COVID-19 Severity Among Older Adults in the Province of Quebec

医学 背景(考古学) 人工智能 机器学习 随机森林 接收机工作特性 2019年冠状病毒病(COVID-19) 计算机科学 内科学 地理 疾病 传染病(医学专业) 考古
作者
Samira Rahimi,Charlene H. Chu,Roland Grad,Mark Karanofsky,Mylène Arsenault,Charlene Ronquillo,Isabelle Vedel,Katherine S. McGilton,Machelle Wilchesky
出处
期刊:Big data [Mary Ann Liebert, Inc.]
卷期号:: 3619-3619 被引量:9
标识
DOI:10.1370/afm.21.s1.3619
摘要

Context:

Patients over the age of 65 years are more likely to experience higher severity and mortality rates than other populations from COVID-19. Clinicians need assistance in supporting their decisions regarding the management of these patients. Artificial Intelligence (AI) can help with this regard. However, the lack of explainability—defined as “the ability to understand and evaluate the internal mechanism of the algorithm/computational process in human terms”—of AI is one of the major challenges to its application in health care. We know little about application of explainable AI (XAI) in health care.

Objective:

In this study, we aimed to evaluate the feasibility of the development of explainable machine learning models to predict COVID-19 severity among older adults.

Design:

Quantitative machine learning methods.

Setting:

Long-term care facilities within the province of Quebec.

Participants:

Patients 65 years and older presented to the hospitals who had a positive polymerase chain reaction test for COVID-19.

Intervention:

We used XAI-specific methods (e.g., EBM), machine learning methods (i.e., random forest, deep forest, and XGBoost), as well as explainable approaches such as LIME, SHAP, PIMP, and anchor with the mentioned machine learning methods.

Outcome measures:

Classification accuracy and area under the receiver operating characteristic curve (AUC).

Results:

The age distribution of the patients (n=986, 54.6% male) was 84.5□19.5 years. The best-performing models (and their performance) were as follows. Deep forest using XAI agnostic methods LIME (97.36% AUC, 91.65 ACC), Anchor (97.36% AUC, 91.65 ACC), and PIMP (96.93% AUC, 91.65 ACC). We found alignment with the identified reasoning of our models’ predictions and clinical studies’ findings—about the correlation of different variables such as diabetes and dementia, and the severity of COVID-19 in this population.

Conclusions:

The use of explainable machine learning models, to predict the severity of COVID-19 among older adults is feasible. We obtained a high-performance level as well as explainability in the prediction of COVID-19 severity in this population. Further studies are required to integrate these models into a decision support system to facilitate the management of diseases such as COVID-19 for (primary) health care providers and evaluate their usability among them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Sunny完成签到,获得积分10
7秒前
ding应助Sunny采纳,获得10
12秒前
忘忧Aquarius完成签到,获得积分10
15秒前
24秒前
白天亮完成签到,获得积分10
25秒前
标致的泥猴桃完成签到,获得积分10
27秒前
XiaoliangXue发布了新的文献求助10
28秒前
beihaik完成签到 ,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
顾矜应助科研通管家采纳,获得30
1分钟前
xue完成签到 ,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
研友_LpQGjn完成签到 ,获得积分10
2分钟前
al完成签到 ,获得积分10
2分钟前
poki发布了新的文献求助10
2分钟前
xyrehab完成签到,获得积分10
2分钟前
2分钟前
xyrehab发布了新的文献求助10
2分钟前
随机数学完成签到,获得积分10
2分钟前
勤恳依霜发布了新的文献求助10
2分钟前
英俊的铭应助xyrehab采纳,获得10
3分钟前
斯文败类应助勤恳依霜采纳,获得10
3分钟前
Orange应助孙伟健采纳,获得10
3分钟前
3分钟前
孙伟健发布了新的文献求助10
3分钟前
ding应助伶俐的凡之采纳,获得10
3分钟前
冬菊完成签到 ,获得积分10
3分钟前
li完成签到 ,获得积分10
4分钟前
Owen应助孙伟健采纳,获得10
4分钟前
liuzhigang完成签到 ,获得积分10
4分钟前
4分钟前
孙伟健发布了新的文献求助10
4分钟前
4分钟前
5分钟前
fang20130608完成签到,获得积分10
5分钟前
fang20130608发布了新的文献求助10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4823365
求助须知:如何正确求助?哪些是违规求助? 4130546
关于积分的说明 12781794
捐赠科研通 3871543
什么是DOI,文献DOI怎么找? 2129977
邀请新用户注册赠送积分活动 1150682
关于科研通互助平台的介绍 1047757