Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study

计算机科学 一般化 人工智能 断层(地质) 自编码 模式识别(心理学) 过程(计算) 样品(材料) 理论(学习稳定性) 机器学习 方位(导航) 人工神经网络 数据挖掘 算法 数学 数学分析 地质学 地震学 操作系统 化学 色谱法
作者
Wentao Mao,Yamin Liu,Ling Ding,Yuan Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 9515-9530 被引量:217
标识
DOI:10.1109/access.2018.2890693
摘要

Due to the real working conditions and data acquisition equipment, the collected working data of bearings are actually limited. Meanwhile, as the rolling bearing works in the normal state at most times, it is easy to raise the imbalance problem of fault types which restricts the diagnosis accuracy and stability. To solve these problems, we present an imbalanced fault diagnosis method based on the generative adversarial network (GAN) and provide a comparative study in detail. The key idea is utilizing GAN, a kind of deep learning technique, to generate synthetic samples for minority fault class and then improve the generalization ability of the fault diagnosis model. First, this method applies fast Fourier transform to pre-process the original vibration signal and then obtains the frequency spectrum of fault samples. Second, it uses the spectrum data as the input of GAN to generate the synthetic minority samples following the data distribution of the real samples. Finally, it puts the synthetic samples into the training set and builds a stacked denoising auto encoder model for fault diagnosis. To testify the effectiveness of the proposed method, a series of comparative experiments is carried out on the CWRU bearing dataset. The results show that the proposed method can provide a better solution for imbalanced fault diagnosis on the basis of generating similar fault samples. As a comparative study, the proposed method is compared to several diagnostic methods with traditional time-frequency domain characteristics. Moreover, we also demonstrate that the proposed method outperforms three widely used sample synthesis techniques, such as random oversampling, synthetic minority oversampling technique, and the principal curve-based oversampling method in terms of diagnosis accuracy and numerical stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啊啊啊发布了新的文献求助20
1秒前
洛洛发布了新的文献求助10
2秒前
张小星发布了新的文献求助10
4秒前
就叫柠檬吧应助陈年旧事采纳,获得10
4秒前
活泼的雁玉完成签到,获得积分10
6秒前
小理发布了新的文献求助10
6秒前
科研通AI5应助K_采纳,获得30
7秒前
7秒前
7秒前
iamxx_完成签到,获得积分10
8秒前
善学以致用应助奚斌采纳,获得10
8秒前
张小星完成签到,获得积分10
9秒前
9秒前
简单山水完成签到,获得积分10
10秒前
11秒前
李爱国应助飞快的代天采纳,获得10
11秒前
思源应助苏苏2025采纳,获得10
14秒前
二号发布了新的文献求助10
14秒前
14秒前
17秒前
辛勤的晓兰完成签到,获得积分10
17秒前
SHY发布了新的文献求助10
17秒前
霸气谷蕊完成签到,获得积分10
18秒前
优秀小笼包完成签到,获得积分10
19秒前
19秒前
jersey给jersey的求助进行了留言
19秒前
怡然帅完成签到 ,获得积分10
20秒前
优秀的尔风完成签到,获得积分10
20秒前
21秒前
23秒前
斯文败类应助SHY采纳,获得10
24秒前
dzps发布了新的文献求助10
25秒前
K_发布了新的文献求助30
26秒前
26秒前
纯情的沛岚完成签到,获得积分10
27秒前
28秒前
激昂的舞蹈完成签到,获得积分20
28秒前
29秒前
Owen应助get采纳,获得10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010